{"title":"The effect of ischemic preconditioning on physical fitness and performance: a meta-analysis in healthy adults.","authors":"Zhen Chen, Wenqiang Wu, Lijun Qiang, Congshuai Wang, Zhijian He, Yufeng Wang","doi":"10.1007/s00421-024-05633-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This meta-analysis aims to assess the impact of ischemic preconditioning (IPC) on physical fitness and performance, with a focus on its specific role in aerobic endurance, anaerobic endurance, explosive power and strength.</p><p><strong>Methods: </strong>Systematic searches were conducted across multiple databases (CNKI, CBM, Cochrane Library, Web of Science, PubMed, and Embase) up to September 6, 2023. We included studies that employed randomized controlled trial methods and sham ischemic preconditioning as the placebo group, and two reviewers independently screened literature and extracted data, using Review Manager 5.3 for analysis.</p><p><strong>Results: </strong>This meta-analysis comprises 27 articles with 405 individuals, selected according to specified criteria. IPC significantly increased the blood lactate concentration after anaerobic speed endurance exercise (MD = 0.74, P = 0.03), the blood lactate concentration after incremental exercise (MD = 0.49, P = 0.04), the blood lactate concentration after muscular endurance exercise (MD = 0.68, P = 0.02), and the one-repetition maximum (MD = 1.38, P = 0.00001). Furthermore, it also significantly shortened completion time of the exercises primarily powered by glycolysis (MD = - 0.49, P = 0.01) and completion time of the exercises primarily powered by aerobic system (MD = - 7.27, P = 0.05), while marginally prolonging time to exhaustion (MD = 22.68, P = 0.08). However, IPC had no significant effect on maximum oxygen uptake, blood lactate concentration in fixed-load aerobic endurance exercise, peak power, or peak aerobic power, nor on completion time of the exercises primarily powered by phosphagen system.</p><p><strong>Conclusion: </strong>IPC could serve as a method to enhance physical performance, particularly for exercises primarily powered by aerobic system and glycolysis. Future research might explore how various cycles, locations, and widths of IPC affect the physical performance of participants with different activity levels.</p>","PeriodicalId":12005,"journal":{"name":"European Journal of Applied Physiology","volume":" ","pages":"805-821"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00421-024-05633-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This meta-analysis aims to assess the impact of ischemic preconditioning (IPC) on physical fitness and performance, with a focus on its specific role in aerobic endurance, anaerobic endurance, explosive power and strength.
Methods: Systematic searches were conducted across multiple databases (CNKI, CBM, Cochrane Library, Web of Science, PubMed, and Embase) up to September 6, 2023. We included studies that employed randomized controlled trial methods and sham ischemic preconditioning as the placebo group, and two reviewers independently screened literature and extracted data, using Review Manager 5.3 for analysis.
Results: This meta-analysis comprises 27 articles with 405 individuals, selected according to specified criteria. IPC significantly increased the blood lactate concentration after anaerobic speed endurance exercise (MD = 0.74, P = 0.03), the blood lactate concentration after incremental exercise (MD = 0.49, P = 0.04), the blood lactate concentration after muscular endurance exercise (MD = 0.68, P = 0.02), and the one-repetition maximum (MD = 1.38, P = 0.00001). Furthermore, it also significantly shortened completion time of the exercises primarily powered by glycolysis (MD = - 0.49, P = 0.01) and completion time of the exercises primarily powered by aerobic system (MD = - 7.27, P = 0.05), while marginally prolonging time to exhaustion (MD = 22.68, P = 0.08). However, IPC had no significant effect on maximum oxygen uptake, blood lactate concentration in fixed-load aerobic endurance exercise, peak power, or peak aerobic power, nor on completion time of the exercises primarily powered by phosphagen system.
Conclusion: IPC could serve as a method to enhance physical performance, particularly for exercises primarily powered by aerobic system and glycolysis. Future research might explore how various cycles, locations, and widths of IPC affect the physical performance of participants with different activity levels.
期刊介绍:
The European Journal of Applied Physiology (EJAP) aims to promote mechanistic advances in human integrative and translational physiology. Physiology is viewed broadly, having overlapping context with related disciplines such as biomechanics, biochemistry, endocrinology, ergonomics, immunology, motor control, and nutrition. EJAP welcomes studies dealing with physical exercise, training and performance. Studies addressing physiological mechanisms are preferred over descriptive studies. Papers dealing with animal models or pathophysiological conditions are not excluded from consideration, but must be clearly relevant to human physiology.