{"title":"Confidence intervals estimator of the kinetic parameters: do its reliability depend on the assembling method of the oxygen uptakes?","authors":"Maria Pia Francescato, Valentina Cettolo","doi":"10.1007/s00421-024-05629-6","DOIUrl":null,"url":null,"abstract":"<p><p>Gas exchange data acquired repeatedly under the same exercise conditions are assembled together to improve the kinetic parameters of breath-by-breath oxygen uptake. The latter are provided by the non-linear regression procedure, together with the corresponding estimators of the width of the Confidence Intervals (i.e., the Asymptotic Standard Errors; ASEs). We tested, for two different assembling procedures, whether the range of values identified by the ASE actually correspond to the 95% Confidence Interval. Ten O<sub>2</sub> uptake responses were acquired on 10 healthy volunteers performing a square-wave moderate-intensity exercise. Kinetic parameters were estimated running the non-linear regression with a mono-exponential model on an increasingly greater number of responses (Nr, from 1 to 10), assembled together using the \"stacking\" and the \"1-s-bins\" procedures. Kinetic values obtained assembling together the 10 repetitions were assumed as \"true\" values. The time constant was not affected by Nr or by the assembling procedure (ANOVA; p>0.54 and p>0.16, respectively). The corresponding ASE decreased according to Nr (ANOVA; p=0.000), being significantly smaller for the \"1-s-bins\" procedure compared to the \"stacking\" one (ANOVA; p<0.001). Excluding 20s at the start of the fitting window, the range of values identified with the ASE provided by the \"1-s-bins\" and the \"stacking\" procedures included the \"true\" value in 85% and in 95% of cases, respectively. The \"stacking\" procedure should be preferred since it yielded ASEs for the time constant that provided a range of values satisfying the statistical meaning of the width of the Confidence Intervals, at the given degree of probability.</p>","PeriodicalId":12005,"journal":{"name":"European Journal of Applied Physiology","volume":" ","pages":"781-791"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889014/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00421-024-05629-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gas exchange data acquired repeatedly under the same exercise conditions are assembled together to improve the kinetic parameters of breath-by-breath oxygen uptake. The latter are provided by the non-linear regression procedure, together with the corresponding estimators of the width of the Confidence Intervals (i.e., the Asymptotic Standard Errors; ASEs). We tested, for two different assembling procedures, whether the range of values identified by the ASE actually correspond to the 95% Confidence Interval. Ten O2 uptake responses were acquired on 10 healthy volunteers performing a square-wave moderate-intensity exercise. Kinetic parameters were estimated running the non-linear regression with a mono-exponential model on an increasingly greater number of responses (Nr, from 1 to 10), assembled together using the "stacking" and the "1-s-bins" procedures. Kinetic values obtained assembling together the 10 repetitions were assumed as "true" values. The time constant was not affected by Nr or by the assembling procedure (ANOVA; p>0.54 and p>0.16, respectively). The corresponding ASE decreased according to Nr (ANOVA; p=0.000), being significantly smaller for the "1-s-bins" procedure compared to the "stacking" one (ANOVA; p<0.001). Excluding 20s at the start of the fitting window, the range of values identified with the ASE provided by the "1-s-bins" and the "stacking" procedures included the "true" value in 85% and in 95% of cases, respectively. The "stacking" procedure should be preferred since it yielded ASEs for the time constant that provided a range of values satisfying the statistical meaning of the width of the Confidence Intervals, at the given degree of probability.
期刊介绍:
The European Journal of Applied Physiology (EJAP) aims to promote mechanistic advances in human integrative and translational physiology. Physiology is viewed broadly, having overlapping context with related disciplines such as biomechanics, biochemistry, endocrinology, ergonomics, immunology, motor control, and nutrition. EJAP welcomes studies dealing with physical exercise, training and performance. Studies addressing physiological mechanisms are preferred over descriptive studies. Papers dealing with animal models or pathophysiological conditions are not excluded from consideration, but must be clearly relevant to human physiology.