Functions and Mechanism of Thyroid Hormone Receptor Action During Amphibian Development.

IF 3.8 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Emeric Louis, Liezhen Fu, Yun-Bo Shi, Laurent M Sachs
{"title":"Functions and Mechanism of Thyroid Hormone Receptor Action During Amphibian Development.","authors":"Emeric Louis, Liezhen Fu, Yun-Bo Shi, Laurent M Sachs","doi":"10.1210/endocr/bqae137","DOIUrl":null,"url":null,"abstract":"<p><p>Thyroid hormones and their receptors (TRs) play critical roles during vertebrate development. One of the most dramatic developmental processes regulated by thyroid hormones is frog metamorphosis, which mimics the postembryonic (perinatal) period in mammals. Here, we review some of the findings on the developmental functions of thyroid hormones and TRs as well as their associated mechanisms of action obtained from this model system. More than 2 decades ago, a dual function model was proposed for TR in anuran development. During larval development, unliganded receptors recruit corepressors to repress thyroid hormone response genes to prevent premature metamorphic changes. Subsequently, when thyroid hormone levels rise, liganded receptors recruit coactivators to activate thyroid hormone response genes, leading to metamorphic changes. Over the years, molecular and genetic approaches have provided strong support for this model and have shown that it is applicable to mammalian development as well as to understanding the diverse effects of thyroid hormones in normal physiology and diseases caused by thyroid hormone signaling dysfunction.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497603/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae137","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Thyroid hormones and their receptors (TRs) play critical roles during vertebrate development. One of the most dramatic developmental processes regulated by thyroid hormones is frog metamorphosis, which mimics the postembryonic (perinatal) period in mammals. Here, we review some of the findings on the developmental functions of thyroid hormones and TRs as well as their associated mechanisms of action obtained from this model system. More than 2 decades ago, a dual function model was proposed for TR in anuran development. During larval development, unliganded receptors recruit corepressors to repress thyroid hormone response genes to prevent premature metamorphic changes. Subsequently, when thyroid hormone levels rise, liganded receptors recruit coactivators to activate thyroid hormone response genes, leading to metamorphic changes. Over the years, molecular and genetic approaches have provided strong support for this model and have shown that it is applicable to mammalian development as well as to understanding the diverse effects of thyroid hormones in normal physiology and diseases caused by thyroid hormone signaling dysfunction.

甲状腺激素受体在两栖动物发育过程中的功能和作用机制
甲状腺激素及其受体(TRs)在脊椎动物的发育过程中发挥着至关重要的作用。受甲状腺激素调控的最引人注目的发育过程之一是模拟哺乳动物胚胎后期(围产期)的青蛙变态。在这里,我们回顾了从这一模型系统中获得的有关甲状腺激素和TRs的发育功能及其相关作用机制的一些发现。二十多年前,有人提出了TR在无尾类发育过程中的双重功能模型。在幼虫发育过程中,未连接的受体会招募核心抑制因子来抑制甲状腺激素反应基因,以防止过早的蜕变。随后,当甲状腺激素水平升高时,配位受体招募辅助激活子激活甲状腺激素反应基因,导致变态变化。多年来,分子和遗传学方法为这一模型提供了强有力的支持,并表明它适用于哺乳动物的发育,以及理解甲状腺激素在正常生理和甲状腺激素信号传导功能障碍引起的疾病中的各种作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Endocrinology
Endocrinology 医学-内分泌学与代谢
CiteScore
8.10
自引率
4.20%
发文量
195
审稿时长
2-3 weeks
期刊介绍: The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信