Neelakanta Sarvashiva Kiran, Chandrashekar Yashaswini, Ankita Chatterjee, Maulin P Shah
{"title":"Biotechnological Approaches for Metal Recovery from Electronic Wastes.","authors":"Neelakanta Sarvashiva Kiran, Chandrashekar Yashaswini, Ankita Chatterjee, Maulin P Shah","doi":"10.1007/s00284-024-03945-w","DOIUrl":null,"url":null,"abstract":"<p><p>The disposal of electronic waste (EW) in open landfills has caused several toxic environmental effects. The harmful metallic components released in the environment due to deposition of EW act as hazards for living systems. EW management has been widely studied in recent days across the world. Though, several processes are implemented in extraction, recycling and recovery of heavy metals from the EW, most of them are not effective in recovering the precious metals. Various chemical processes are executed for efficient extraction of precious metals from e-wastes. Though the techniques are easy to process and rapid, however, the chemical leaching also has detrimental environmental consequences. Biological approaches, on the other hand, solves the purpose for efficient and environmentally friendly recovery of precious metals. Thus, both resource recovery as well as remediation can be targeted simultaneously. Biotechnological methods offer sustainable and efficient solutions for metal recovery from electronic wastes, presenting a viable alternative to traditional methods. Continued advancements in this field hold significant promise for addressing the growing e-waste challenge.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-03945-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The disposal of electronic waste (EW) in open landfills has caused several toxic environmental effects. The harmful metallic components released in the environment due to deposition of EW act as hazards for living systems. EW management has been widely studied in recent days across the world. Though, several processes are implemented in extraction, recycling and recovery of heavy metals from the EW, most of them are not effective in recovering the precious metals. Various chemical processes are executed for efficient extraction of precious metals from e-wastes. Though the techniques are easy to process and rapid, however, the chemical leaching also has detrimental environmental consequences. Biological approaches, on the other hand, solves the purpose for efficient and environmentally friendly recovery of precious metals. Thus, both resource recovery as well as remediation can be targeted simultaneously. Biotechnological methods offer sustainable and efficient solutions for metal recovery from electronic wastes, presenting a viable alternative to traditional methods. Continued advancements in this field hold significant promise for addressing the growing e-waste challenge.