Hyeong-Ju Yu, You-Jung Kang, Yeseul Park, Hoon Kim, Jee-Hwan Kim
{"title":"A comparison of the mechanical properties of 3D-printed, milled, and conventional denture base resin materials.","authors":"Hyeong-Ju Yu, You-Jung Kang, Yeseul Park, Hoon Kim, Jee-Hwan Kim","doi":"10.4012/dmj.2024-080","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the mechanical properties of three denture base resin materials produced by three-dimensional (3D) printing (Group P), computer-aided design/computer-aided manufacturing milling (Group M), and conventional (Group C) methods. Three-point flexural tests were performed before and after thermocycling treatment to evaluate the mechanical properties. Additionally, nanoindentation and dynamic mechanical analysis (DMA) were used to analyze the behavior of the materials. After flexural strength tests, scanning electron microscopy (SEM) was performed to evaluate the fracture cross-section. The results consistently showed that Group P exhibited significantly higher flexural strength and modulus regardless of thermocycling than Groups C and M (p<0.05), along with a higher storage modulus in DMA and greater resistance and resilience to nanoindentation deformation. SEM analysis showed that Group C had a relatively smooth cross-section, whereas Groups M and P had torn cross-sections. This study suggests that the 3D-printed material has suitable mechanical properties for hard dental prosthesis applications.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2024-080","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the mechanical properties of three denture base resin materials produced by three-dimensional (3D) printing (Group P), computer-aided design/computer-aided manufacturing milling (Group M), and conventional (Group C) methods. Three-point flexural tests were performed before and after thermocycling treatment to evaluate the mechanical properties. Additionally, nanoindentation and dynamic mechanical analysis (DMA) were used to analyze the behavior of the materials. After flexural strength tests, scanning electron microscopy (SEM) was performed to evaluate the fracture cross-section. The results consistently showed that Group P exhibited significantly higher flexural strength and modulus regardless of thermocycling than Groups C and M (p<0.05), along with a higher storage modulus in DMA and greater resistance and resilience to nanoindentation deformation. SEM analysis showed that Group C had a relatively smooth cross-section, whereas Groups M and P had torn cross-sections. This study suggests that the 3D-printed material has suitable mechanical properties for hard dental prosthesis applications.
本研究调查了通过三维(3D)打印(P 组)、计算机辅助设计/计算机辅助制造铣削(M 组)和传统(C 组)方法生产的三种义齿基托树脂材料的机械性能。在热循环处理前后进行了三点弯曲测试,以评估其机械性能。此外,还使用了纳米压痕和动态机械分析(DMA)来分析材料的行为。挠曲强度测试后,使用扫描电子显微镜(SEM)评估断裂截面。结果一致表明,无论热循环与否,P 组的抗弯强度和模量都明显高于 C 组和 M 组(p
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.