Ali Asadipour, Fatemeh Ghelich Khani, Mohammad Amin Langarizadeh, Ehsan Salarkia, Marziye Ranjbar Tavakoli, Fatemeh Sharifi, Bagher Amirheidari, Mehdi Ranjbar, Ehsan Faghih-Mirzaei, Yaghoub Pourshojaei
{"title":"Targeting Leishmaniasis with Nitrovinyl Derivatives: Their Synthesis, In Vitro Assessment, and Computational Exploration.","authors":"Ali Asadipour, Fatemeh Ghelich Khani, Mohammad Amin Langarizadeh, Ehsan Salarkia, Marziye Ranjbar Tavakoli, Fatemeh Sharifi, Bagher Amirheidari, Mehdi Ranjbar, Ehsan Faghih-Mirzaei, Yaghoub Pourshojaei","doi":"10.2174/0109298673323271241002060614","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Leishmaniasis is an affliction caused by the protozoan parasites of the Leishmania genus. This disease impacts a substantial global populace, exceeding one million individuals, leading to disability-adjusted life years and fatalities, particularly within tropical regions. At present, the existing drug therapies have not attained a degree of efficacy that can be unequivocally classified as genuinely triumphant. In this context, the conception of novel compounds possessing the capacity to impede the parasite's life cycle at various stages holds considerable significance.</p><p><strong>Methods: </strong>In this research endeavor, an exploration was undertaken involving the design and synthesis of nineteen derivatives incorporating the nitrovinyl pharmacophore. The subsequent evaluation of their impacts on L. major was conducted through a combination of in vitro (amastigote and promastigote inhibition) and in silico (molecular docking) investigations.</p><p><strong>Results: </strong>All of the compounds were synthesized and purified with good yields. In the amastigote inhibition assay, compounds 10, 15, and 18 showed better inhibitory effects than the standard drug meglumine antimonate (MA). Regarding the synergistic impact of synthesized compounds and MA together, all outcomes were significantly better than those of monotherapy of each in amastigote and macrophage forms. In the promastigote assay, compounds 2, 8, 12, 15, 16, 17, and 19 demonstrated superior inhibitory effects compared to MA. Moreover, compounds 4, 12, and 15 showed the best synergies with MA in inhibiting amastigotes. According to docking scores, 1XTP (a SAM-dependent methyltransferase) and 4G5D (Prostaglandin F synthase) receptors were found to be the most probable targets in their mechanism of action.</p><p><strong>Conclusion: </strong>In vitro evaluations and computational analyses strongly suggest that these compounds could be effective against both L. major amastigotes and promastigotes. Additionally, they exhibited notable synergistic interactions with MA against both living forms of the parasite.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673323271241002060614","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Leishmaniasis is an affliction caused by the protozoan parasites of the Leishmania genus. This disease impacts a substantial global populace, exceeding one million individuals, leading to disability-adjusted life years and fatalities, particularly within tropical regions. At present, the existing drug therapies have not attained a degree of efficacy that can be unequivocally classified as genuinely triumphant. In this context, the conception of novel compounds possessing the capacity to impede the parasite's life cycle at various stages holds considerable significance.
Methods: In this research endeavor, an exploration was undertaken involving the design and synthesis of nineteen derivatives incorporating the nitrovinyl pharmacophore. The subsequent evaluation of their impacts on L. major was conducted through a combination of in vitro (amastigote and promastigote inhibition) and in silico (molecular docking) investigations.
Results: All of the compounds were synthesized and purified with good yields. In the amastigote inhibition assay, compounds 10, 15, and 18 showed better inhibitory effects than the standard drug meglumine antimonate (MA). Regarding the synergistic impact of synthesized compounds and MA together, all outcomes were significantly better than those of monotherapy of each in amastigote and macrophage forms. In the promastigote assay, compounds 2, 8, 12, 15, 16, 17, and 19 demonstrated superior inhibitory effects compared to MA. Moreover, compounds 4, 12, and 15 showed the best synergies with MA in inhibiting amastigotes. According to docking scores, 1XTP (a SAM-dependent methyltransferase) and 4G5D (Prostaglandin F synthase) receptors were found to be the most probable targets in their mechanism of action.
Conclusion: In vitro evaluations and computational analyses strongly suggest that these compounds could be effective against both L. major amastigotes and promastigotes. Additionally, they exhibited notable synergistic interactions with MA against both living forms of the parasite.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.