Steiner 3-Wiener Index of Zigzag Polyhex Nanotubes.

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Medha Itagi Huilgol, P HShobha HShobha, H Jayakrishna Udupa, Ismail Naci Cangul
{"title":"Steiner 3-Wiener Index of Zigzag Polyhex Nanotubes.","authors":"Medha Itagi Huilgol, P HShobha HShobha, H Jayakrishna Udupa, Ismail Naci Cangul","doi":"10.2174/0113862073329237240929214731","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Let G be a connected graph and S be a k element subset of the vertex set V(G) of G. Steiner distance is a natural generalization of the usual graph distance. The Steiner-k distance dG(S) between the vertices of S is the minimum size among all connected subgraphs whose vertex set contains S. The generalized indices based on Steiner distances have several applications in the real world. It is a well-known fact that \"Steiner Problem\" is NP-complete and hence any parameter based on Steiner distance is also an NP problem.</p><p><strong>Objective: </strong>The objective of this work is to determine the Steiner 3-Wiener index for an important chemical structure called the zigzag polyhex nanotube.</p><p><strong>Methods: </strong>In this paper, we present an algorithm for computing the Steiner 3-Wiener index (SW3) for zigzag polyhex nanotubes. The developed algorithm addresses the complexities associated with exponential increments in the number of vertices as the nanotube's circumference or length expands. The obtained SW3 values for zigzag polyhex nanotubes can be used for Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) analyses.</p><p><strong>Results: </strong>We have presented an algorithm and listed the numerical values of SW3 for various parameters of circumference and length of a zigzag polyhex nanotube to facilitate their utilization in QSAR/ QSPR analyses. We have obtained the time complexity for the algorithm, which shows that the SW3 values are computationally intensive. To explain this complex nature, we have used multiple linear regression to fit log SW3 values corresponding to log p and log q, the radius and length of a nanotube.</p><p><strong>Conclusion: </strong>The algorithm addresses the complexities associated with the exponential increase in vertices as the nanotube's circumference or length expands. Furthermore, we provide SW3 values for various parameter combinations up to circumference or length 17, and a general relation to determine the value of SW3, facilitating its utilization in real-world applications. These values serve as crucial descriptors for understanding the structural nuances of zigzag polyhex nanotubes, that find applications in material science, drug design, drug discovery, etc.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073329237240929214731","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Let G be a connected graph and S be a k element subset of the vertex set V(G) of G. Steiner distance is a natural generalization of the usual graph distance. The Steiner-k distance dG(S) between the vertices of S is the minimum size among all connected subgraphs whose vertex set contains S. The generalized indices based on Steiner distances have several applications in the real world. It is a well-known fact that "Steiner Problem" is NP-complete and hence any parameter based on Steiner distance is also an NP problem.

Objective: The objective of this work is to determine the Steiner 3-Wiener index for an important chemical structure called the zigzag polyhex nanotube.

Methods: In this paper, we present an algorithm for computing the Steiner 3-Wiener index (SW3) for zigzag polyhex nanotubes. The developed algorithm addresses the complexities associated with exponential increments in the number of vertices as the nanotube's circumference or length expands. The obtained SW3 values for zigzag polyhex nanotubes can be used for Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) analyses.

Results: We have presented an algorithm and listed the numerical values of SW3 for various parameters of circumference and length of a zigzag polyhex nanotube to facilitate their utilization in QSAR/ QSPR analyses. We have obtained the time complexity for the algorithm, which shows that the SW3 values are computationally intensive. To explain this complex nature, we have used multiple linear regression to fit log SW3 values corresponding to log p and log q, the radius and length of a nanotube.

Conclusion: The algorithm addresses the complexities associated with the exponential increase in vertices as the nanotube's circumference or length expands. Furthermore, we provide SW3 values for various parameter combinations up to circumference or length 17, and a general relation to determine the value of SW3, facilitating its utilization in real-world applications. These values serve as crucial descriptors for understanding the structural nuances of zigzag polyhex nanotubes, that find applications in material science, drug design, drug discovery, etc.

之字形聚己纳米管的 Steiner 3-Wiener 指数。
背景:设 G 是连通图,S 是 G 的顶点集 V(G) 的 k 元素子集。斯坦纳距离是通常图距离的自然概括。S 的顶点之间的 Steiner-k 距离 dG(S) 是顶点集包含 S 的所有连通子图中的最小尺寸。众所周知,"斯坦纳问题 "是一个 NP-完全问题,因此任何基于斯坦纳距离的参数也是一个 NP 问题:这项工作的目的是确定一种重要化学结构--人字形聚己纳米管--的斯坦纳 3 维纳指数:本文提出了一种计算人字形多六边形纳米管的 Steiner 3-Wiener 指数 (SW3) 的算法。所开发的算法解决了随着纳米管周长或长度的增加,顶点数量呈指数增长的复杂性问题。获得的人字形多六边形纳米管 SW3 值可用于定量结构-活性关系(QSAR)和定量结构-性能关系(QSPR)分析:我们提出了一种算法,并列出了 "人 "字形聚合纳米管周长和长度的各种参数的 SW3 数值,以方便在 QSAR/ QSPR 分析中使用。我们获得了该算法的时间复杂度,这表明 SW3 值的计算量很大。为了解释这种复杂性,我们使用了多元线性回归法来拟合与纳米管的半径和长度对数 p 和 q 相对应的 SW3 对数值:该算法解决了随着纳米管周长或长度的增加,顶点呈指数增长的复杂性问题。此外,我们还为周长或长度为 17 的各种参数组合提供了 SW3 值,并提供了确定 SW3 值的一般关系式,便于在实际应用中使用。这些值是了解人字形多六边形纳米管结构细微差别的关键描述符,可应用于材料科学、药物设计、药物发现等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
327
审稿时长
7.5 months
期刊介绍: Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal: Target identification and validation Assay design, development, miniaturization and comparison High throughput/high content/in silico screening and associated technologies Label-free detection technologies and applications Stem cell technologies Biomarkers ADMET/PK/PD methodologies and screening Probe discovery and development, hit to lead optimization Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries) Chemical library design and chemical diversity Chemo/bio-informatics, data mining Compound management Pharmacognosy Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products) Natural Product Analytical Studies Bipharmaceutical studies of Natural products Drug repurposing Data management and statistical analysis Laboratory automation, robotics, microfluidics, signal detection technologies Current & Future Institutional Research Profile Technology transfer, legal and licensing issues Patents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信