Chih-Jung Chang , Qi-Wen Ma , Tian-Lin Li , Jun-An Liu , Cheng-Hsien Hsieh , Liang Chen
{"title":"Metabolomics identifies metabolite markers in plasma and extracellular vesicles within plasma in patients with asthma","authors":"Chih-Jung Chang , Qi-Wen Ma , Tian-Lin Li , Jun-An Liu , Cheng-Hsien Hsieh , Liang Chen","doi":"10.1016/j.cca.2024.120010","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Plasma and extracellular vesicles (EVs) derived from plasma are important sources of information regarding individual health. Metabolomic analysis of plasma and EVs may provide new methods for predicting disease occurrence. This study aims to analyze the metabolomic characteristics of plasma and plasma EVs in asthma patients.</div></div><div><h3>Methods</h3><div>Plasma samples were collected from healthy individuals and asthma patients. EVs were isolated from the plasma using ultracentrifugation. The isolated EVs were characterized by nanoparticle tracking analysis and flow cytometry. Metabolomic analysis was performed using a liquid chromatography-mass spectrometry platform.</div></div><div><h3>Results</h3><div>This study successfully extracted EVs from plasma samples. Metabolomic analysis revealed that the composition of differential metabolites in the plasma and EVs of asthma patients was similar. KEGG pathway analysis indicated that the number of upregulated metabolic pathways enriched with differential metabolites in the plasma EVs of asthma patients was significantly greater than that in the plasma samples. Pathways associated with the onset of asthma included asthma, systemic lupus erythematosus, glycerophospholipid metabolism, and autophagy – other, primarily involving the following five metabolites: PS(18:1(9Z)/18:2(9Z,12Z)), PC(18:1(9Z)e/2:0), PS(24:1(15Z)/22:2(13Z,16Z)), PE(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)), and PE(16:0/20:3(8Z,11Z,14Z)). Receiver operating characteristic analysis results suggested that these five differential metabolites may serve as potential biomarkers for asthma.</div></div><div><h3>Conclusion</h3><div>We identified the metabolic characteristics of plasma and EVs in asthma patients, confirming that the metabolites in plasma EVs may serve as potential biomarkers for asthma. This finding not only enhances our understanding of the pathogenesis of asthma but also opens new avenues for targeted therapy.</div></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":"565 ","pages":"Article 120010"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009898124022630","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Plasma and extracellular vesicles (EVs) derived from plasma are important sources of information regarding individual health. Metabolomic analysis of plasma and EVs may provide new methods for predicting disease occurrence. This study aims to analyze the metabolomic characteristics of plasma and plasma EVs in asthma patients.
Methods
Plasma samples were collected from healthy individuals and asthma patients. EVs were isolated from the plasma using ultracentrifugation. The isolated EVs were characterized by nanoparticle tracking analysis and flow cytometry. Metabolomic analysis was performed using a liquid chromatography-mass spectrometry platform.
Results
This study successfully extracted EVs from plasma samples. Metabolomic analysis revealed that the composition of differential metabolites in the plasma and EVs of asthma patients was similar. KEGG pathway analysis indicated that the number of upregulated metabolic pathways enriched with differential metabolites in the plasma EVs of asthma patients was significantly greater than that in the plasma samples. Pathways associated with the onset of asthma included asthma, systemic lupus erythematosus, glycerophospholipid metabolism, and autophagy – other, primarily involving the following five metabolites: PS(18:1(9Z)/18:2(9Z,12Z)), PC(18:1(9Z)e/2:0), PS(24:1(15Z)/22:2(13Z,16Z)), PE(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)), and PE(16:0/20:3(8Z,11Z,14Z)). Receiver operating characteristic analysis results suggested that these five differential metabolites may serve as potential biomarkers for asthma.
Conclusion
We identified the metabolic characteristics of plasma and EVs in asthma patients, confirming that the metabolites in plasma EVs may serve as potential biomarkers for asthma. This finding not only enhances our understanding of the pathogenesis of asthma but also opens new avenues for targeted therapy.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.