Chuang Liu, Le Zhang, Qingqing You, Huangdi Feng, Junhai Huang
{"title":"Advancements in Desilylation Reactions for the Synthesis of Valuable Organic Molecules.","authors":"Chuang Liu, Le Zhang, Qingqing You, Huangdi Feng, Junhai Huang","doi":"10.1002/tcr.202400120","DOIUrl":null,"url":null,"abstract":"<p><p>Silicon, due to its abundance, non-toxicity, and cost-effectiveness, is a critical element in the earth's crust with significant industrial applications. In organic chemistry, main group elements, and in particular silicon, are extensively utilized as versatile synthetic intermediates. Despite the current challenges associated with harsh reaction conditions and unsustainable practices in synthesizing crucial organic structural molecules, desilylation reactions have emerged as a facilitative method, offering milder conditions and operational simplicity. This review provides a comprehensive analysis of recent advancements in the synthesis of valuable organic molecules through two distinct desilylation reactions. It systematically presents the synthesis of a variety of derivatives, such as furan, alcohol, N-heterocyclic, and ketone, highlighting the broad substrate tolerance of these reactions. This broad functional group compatibility suggests a promising future for the synthesis of a wide range of bioactive molecules, underscoring the significant potential of desilylation in contemporary organic synthesis.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202400120"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202400120","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon, due to its abundance, non-toxicity, and cost-effectiveness, is a critical element in the earth's crust with significant industrial applications. In organic chemistry, main group elements, and in particular silicon, are extensively utilized as versatile synthetic intermediates. Despite the current challenges associated with harsh reaction conditions and unsustainable practices in synthesizing crucial organic structural molecules, desilylation reactions have emerged as a facilitative method, offering milder conditions and operational simplicity. This review provides a comprehensive analysis of recent advancements in the synthesis of valuable organic molecules through two distinct desilylation reactions. It systematically presents the synthesis of a variety of derivatives, such as furan, alcohol, N-heterocyclic, and ketone, highlighting the broad substrate tolerance of these reactions. This broad functional group compatibility suggests a promising future for the synthesis of a wide range of bioactive molecules, underscoring the significant potential of desilylation in contemporary organic synthesis.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.