Wolbachia Invasion in Mosquitoes with Incomplete CI, Imperfect Maternal Transmission and Maturation Delay.

IF 2 4区 数学 Q2 BIOLOGY
Xiaoke Ma, Ying Su
{"title":"Wolbachia Invasion in Mosquitoes with Incomplete CI, Imperfect Maternal Transmission and Maturation Delay.","authors":"Xiaoke Ma, Ying Su","doi":"10.1007/s11538-024-01363-4","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanism of cytoplasmic incompatibility (CI) is important in the study of Wolbachia invasion in wild mosquitoes. Su et al. (Bull Math Biol 84(9):95, 2022) proposed a delay differential equation model by relating the CI effect to maturation delay. In this paper, we investigate the dynamics of this model by allowing the same density-dependent death rate and distinct density-independent death rates. Through analyzing the existence and stability of equilibria, we obtain the parameter conditions for Wolbachia successful invasion if the maternal transmission is perfect. While if the maternal transmission is imperfect, we give the ranges of parameters to ensure failure invasion, successful invasion and partially suppressing, respectively. Meanwhile, numerical simulations indicate that the system may exhibit monostable and bistable dynamics when parameters vary. Particularly, in the bistable situation an unstable separatrix, like a line, exists when choosing constant functions as initial values; and the maturation delay affects this separatrix in an interesting way.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 12","pages":"137"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01363-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanism of cytoplasmic incompatibility (CI) is important in the study of Wolbachia invasion in wild mosquitoes. Su et al. (Bull Math Biol 84(9):95, 2022) proposed a delay differential equation model by relating the CI effect to maturation delay. In this paper, we investigate the dynamics of this model by allowing the same density-dependent death rate and distinct density-independent death rates. Through analyzing the existence and stability of equilibria, we obtain the parameter conditions for Wolbachia successful invasion if the maternal transmission is perfect. While if the maternal transmission is imperfect, we give the ranges of parameters to ensure failure invasion, successful invasion and partially suppressing, respectively. Meanwhile, numerical simulations indicate that the system may exhibit monostable and bistable dynamics when parameters vary. Particularly, in the bistable situation an unstable separatrix, like a line, exists when choosing constant functions as initial values; and the maturation delay affects this separatrix in an interesting way.

具有不完全 CI、不完全母体传播和成熟延迟的蚊子中的沃尔巴克氏体入侵。
细胞质不相容(CI)的机制对研究野生蚊子的沃尔巴克氏体入侵非常重要。Su等人(Bull Math Biol 84(9):95, 2022)提出了一个延迟微分方程模型,将CI效应与成熟延迟联系起来。在本文中,我们通过允许相同的依赖密度的死亡率和不同的不依赖密度的死亡率来研究该模型的动力学。通过分析平衡态的存在性和稳定性,我们得到了在母体传播完美的情况下,沃尔巴克氏菌成功入侵的参数条件。而在母源传播不完全的情况下,我们分别给出了确保入侵失败、入侵成功和部分抑制的参数范围。同时,数值模拟表明,当参数变化时,系统可能表现出单稳态和双稳态动态。特别是在双稳态情况下,当选择恒定函数作为初始值时,会存在一个类似直线的不稳定分离矩阵;成熟延迟会以一种有趣的方式影响这个分离矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信