{"title":"Host-Parasitoid Systems are Vulnerable to Extinction via P-Tipping: Forest Tent Caterpillar as an Example.","authors":"Bryce F Dyck, Rebecca Tyson","doi":"10.1007/s11538-024-01358-1","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous-time predator-prey models admit limit cycle solutions that are vulnerable to the phenomenon of phase-sensitive tipping (P-tipping): The predator-prey system can tip to extinction following a rapid change in a key model parameter, even if the limit cycle remains a stable attractor. In this paper, we investigate the existence of P-tipping in an analogous discrete-time system: a host-parasitoid system, using the economically damaging forest tent caterpillar as our motivating example. We take the intrinsic growth rate of the consumer as our key parameter, allowing it to vary with environmental conditions in ways consistent with the predictions of global warming. We find that the discrete-time system does admit P-tipping, and that the discrete-time P-tipping phenomenon shares characteristics with the continuous-time one: Both require an Allee effect on the resource population, occur in small subsets of the phase plane, and exhibit stochastic resonance as a function of the autocorrelation in the environmental variability. In contrast, the discrete-time P-tipping phenomenon occurs when the environmental conditions switch from low to high productivity, can occur even if the magnitude of the switch is relatively small, and can occur from multiple disjoint regions in the phase plane.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 12","pages":"138"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01358-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous-time predator-prey models admit limit cycle solutions that are vulnerable to the phenomenon of phase-sensitive tipping (P-tipping): The predator-prey system can tip to extinction following a rapid change in a key model parameter, even if the limit cycle remains a stable attractor. In this paper, we investigate the existence of P-tipping in an analogous discrete-time system: a host-parasitoid system, using the economically damaging forest tent caterpillar as our motivating example. We take the intrinsic growth rate of the consumer as our key parameter, allowing it to vary with environmental conditions in ways consistent with the predictions of global warming. We find that the discrete-time system does admit P-tipping, and that the discrete-time P-tipping phenomenon shares characteristics with the continuous-time one: Both require an Allee effect on the resource population, occur in small subsets of the phase plane, and exhibit stochastic resonance as a function of the autocorrelation in the environmental variability. In contrast, the discrete-time P-tipping phenomenon occurs when the environmental conditions switch from low to high productivity, can occur even if the magnitude of the switch is relatively small, and can occur from multiple disjoint regions in the phase plane.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.