Sequence-matching adapter trimmers generate consistent quality and assembly metrics for Illumina sequencing of RNA viruses.

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
Grace Nabakooza, Darlene D Wagner, Nehalraza Momin, Rachel L Marine, William C Weldon, M Steven Oberste
{"title":"Sequence-matching adapter trimmers generate consistent quality and assembly metrics for Illumina sequencing of RNA viruses.","authors":"Grace Nabakooza, Darlene D Wagner, Nehalraza Momin, Rachel L Marine, William C Weldon, M Steven Oberste","doi":"10.1186/s13104-024-06951-0","DOIUrl":null,"url":null,"abstract":"<p><p>Trimming adapters and low-quality bases from next-generation sequencing (NGS) data is crucial for optimal analysis. We evaluated six trimming programs, implementing five different algorithms, for their effectiveness in trimming adapters and improving quality, contig assembly, and single-nucleotide polymorphism (SNP) quality and concordance for poliovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and norovirus paired data sequenced on Illumina iSeq and MiSeq platforms. Trimmomatic and BBDuk effectively removed adapters from all datasets, unlike FastP, AdapterRemoval, SeqPurge, and Skewer. All trimmers improved read quality (Q ≥ 30, 87.8 - 96.1%) compared to raw reads (83.6 - 93.2%). Trimmers implementing traditional sequence-matching (Trimmomatic and AdapterRemoval) and overlapping algorithm (FastP) retained the highest-quality reads. While all trimmers improved the maximum contig length and genome coverage for iSeq and MiSeq viral assemblies, BBDuk-trimmed reads assembled the shortest contigs. SNP concordance was consistently high (> 97.7 - 100%) across trimmers. However, BBDuk-trimmed reads had the lowest quality SNPs. Overall, the two adapter trimmers that utilized the traditional sequence-matching algorithm performed consistently across the viral datasets analyzed. Our findings guide software selection and inform future versatile trimmer development for viral genome analysis.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"17 1","pages":"308"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476207/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-024-06951-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Trimming adapters and low-quality bases from next-generation sequencing (NGS) data is crucial for optimal analysis. We evaluated six trimming programs, implementing five different algorithms, for their effectiveness in trimming adapters and improving quality, contig assembly, and single-nucleotide polymorphism (SNP) quality and concordance for poliovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and norovirus paired data sequenced on Illumina iSeq and MiSeq platforms. Trimmomatic and BBDuk effectively removed adapters from all datasets, unlike FastP, AdapterRemoval, SeqPurge, and Skewer. All trimmers improved read quality (Q ≥ 30, 87.8 - 96.1%) compared to raw reads (83.6 - 93.2%). Trimmers implementing traditional sequence-matching (Trimmomatic and AdapterRemoval) and overlapping algorithm (FastP) retained the highest-quality reads. While all trimmers improved the maximum contig length and genome coverage for iSeq and MiSeq viral assemblies, BBDuk-trimmed reads assembled the shortest contigs. SNP concordance was consistently high (> 97.7 - 100%) across trimmers. However, BBDuk-trimmed reads had the lowest quality SNPs. Overall, the two adapter trimmers that utilized the traditional sequence-matching algorithm performed consistently across the viral datasets analyzed. Our findings guide software selection and inform future versatile trimmer development for viral genome analysis.

序列匹配适配器修剪器为 Illumina RNA 病毒测序提供一致的质量和组装指标。
从下一代测序(NGS)数据中修剪适配体和低质量碱基对优化分析至关重要。我们评估了六种修剪程序(采用五种不同的算法)在修剪适配体和提高质量、序列组装以及单核苷酸多态性(SNP)质量和一致性方面的效果,这些数据是在 Illumina iSeq 和 MiSeq 平台上测序的脊髓灰质炎病毒、严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)和诺如病毒配对数据。与 FastP、AdapterRemoval、SeqPurge 和 Skewer 不同,Trimmomatic 和 BBDuk 能有效去除所有数据集中的适配体。与原始读数(83.6 - 93.2%)相比,所有修剪器都提高了读数质量(Q ≥ 30,87.8 - 96.1%)。采用传统序列匹配(Trimmomatic 和 AdapterRemoval)和重叠算法(FastP)的修剪器保留了最高质量的读数。虽然所有修剪器都提高了 iSeq 和 MiSeq 病毒组装的最大等位长度和基因组覆盖率,但 BBDuk 修剪的读数组装的等位长度最短。不同修剪器的 SNP 一致性一直很高(> 97.7 - 100%)。但是,BBDuk 修剪读数的 SNP 质量最低。总的来说,使用传统序列匹配算法的两种适配器修剪器在所分析的病毒数据集中表现一致。我们的研究结果为软件选择提供了指导,并为未来病毒基因组分析多功能修剪器的开发提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Research Notes
BMC Research Notes Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍: BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信