Justin A Varholick, Jazmine Thermolice, Gizelle Godinez, Vanessa Dos Santos, Rishi Kondapaneni, Malcolm Maden
{"title":"Older spiny mice (Acomys cahirinus) have delayed and spatially heterogenous ear wound regeneration.","authors":"Justin A Varholick, Jazmine Thermolice, Gizelle Godinez, Vanessa Dos Santos, Rishi Kondapaneni, Malcolm Maden","doi":"10.1242/bio.060565","DOIUrl":null,"url":null,"abstract":"<p><p>The African spiny mouse (Acomys cahirinus) is a unique mammalian model of tissue regeneration, regenerating 4 mm ear-hole punches with cartilage, adipocytes, hair follicles, and muscle. However, the time to regenerate ear tissue varies from 20 to 90 days and muscle regeneration is inconsistent. Some report that older spiny mice have delayed regeneration without investigation on the regenerative capacity of muscle. We thought that delayed regeneration and inconsistent muscle regeneration could be linked via age-related nerve degeneration. While the current study found that spiny mice aged 6-9 months had delayed regeneration compared to 3-4 month-old spiny mice, the capacity of muscle regeneration was unrelated to age, and there was little evidence for age-related nerve degeneration. Instead, the regeneration of muscle, cartilage and adipocytes was spatially heterogeneous, declining in amount from the proximal to distal region of the regenerated tissue. Also, cartilage regeneration in the distal region was decreased in ≥22-month-old Acomys and adipocyte regeneration was decreased in those older than 6 months, compared to 3-4 month olds. While the underlying mechanisms for delayed and spatially heterogenous regeneration remain unclear, age and the spatial region of the regenerated tissue should be considered in experimental designs with spiny mice.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"13 10","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554262/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060565","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The African spiny mouse (Acomys cahirinus) is a unique mammalian model of tissue regeneration, regenerating 4 mm ear-hole punches with cartilage, adipocytes, hair follicles, and muscle. However, the time to regenerate ear tissue varies from 20 to 90 days and muscle regeneration is inconsistent. Some report that older spiny mice have delayed regeneration without investigation on the regenerative capacity of muscle. We thought that delayed regeneration and inconsistent muscle regeneration could be linked via age-related nerve degeneration. While the current study found that spiny mice aged 6-9 months had delayed regeneration compared to 3-4 month-old spiny mice, the capacity of muscle regeneration was unrelated to age, and there was little evidence for age-related nerve degeneration. Instead, the regeneration of muscle, cartilage and adipocytes was spatially heterogeneous, declining in amount from the proximal to distal region of the regenerated tissue. Also, cartilage regeneration in the distal region was decreased in ≥22-month-old Acomys and adipocyte regeneration was decreased in those older than 6 months, compared to 3-4 month olds. While the underlying mechanisms for delayed and spatially heterogenous regeneration remain unclear, age and the spatial region of the regenerated tissue should be considered in experimental designs with spiny mice.
期刊介绍:
Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.