Miika Niemeläinen, Anna-Mari Haapanen-Saaristo, Leena M Koskinen, Josef Gullmets, Emilia Peuhu, Annika Meinander, Sara Calhim, Ilkka Paatero
{"title":"Glutaraldehyde-enhanced autofluorescence as a general tool for 3D morphological imaging.","authors":"Miika Niemeläinen, Anna-Mari Haapanen-Saaristo, Leena M Koskinen, Josef Gullmets, Emilia Peuhu, Annika Meinander, Sara Calhim, Ilkka Paatero","doi":"10.1242/bio.060428","DOIUrl":null,"url":null,"abstract":"<p><p>Routine histochemical techniques are capable of producing vast amount of information from diverse sample types, but these techniques are limited in their ability to generate 3D information. Autofluorescence imaging can be used to analyse samples in 3D but it suffers from weak/low signal intensities. Here, we describe a simple chemical treatment with glutaraldehyde to enhance autofluorescence for 3D fluorescence imaging and to generate detailed morphological images on whole-mount samples. This methodology is straightforward and cost-effective to implement, suitable for a wide range of organisms and sample types. Furthermore, it can be readily integrated with standard confocal and fluorescence microscopes for analysis. This approach has the potential to facilitate the analysis of biological 3D structures and research in developmental biology, including studies on model and non-model organisms.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060428","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Routine histochemical techniques are capable of producing vast amount of information from diverse sample types, but these techniques are limited in their ability to generate 3D information. Autofluorescence imaging can be used to analyse samples in 3D but it suffers from weak/low signal intensities. Here, we describe a simple chemical treatment with glutaraldehyde to enhance autofluorescence for 3D fluorescence imaging and to generate detailed morphological images on whole-mount samples. This methodology is straightforward and cost-effective to implement, suitable for a wide range of organisms and sample types. Furthermore, it can be readily integrated with standard confocal and fluorescence microscopes for analysis. This approach has the potential to facilitate the analysis of biological 3D structures and research in developmental biology, including studies on model and non-model organisms.
期刊介绍:
Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.