Plant NAC transcription factors in the battle against pathogens.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Boxiao Dong, Ye Liu, Gan Huang, Aiping Song, Sumei Chen, Jiafu Jiang, Fadi Chen, Weimin Fang
{"title":"Plant NAC transcription factors in the battle against pathogens.","authors":"Boxiao Dong, Ye Liu, Gan Huang, Aiping Song, Sumei Chen, Jiafu Jiang, Fadi Chen, Weimin Fang","doi":"10.1186/s12870-024-05636-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The NAC transcription factor family, which is recognized as one of the largest plant-specific transcription factor families, comprises numerous members that are widely distributed among various higher plant species and play crucial regulatory roles in plant immunity.</p><p><strong>Results: </strong>In this paper, we provided a detailed summary of the roles that NAC transcription factors play in plant immunity via plant hormone pathways and reactive oxygen species pathways. In addition, we conducted in-depth investigations into the interactions between NAC transcription factors and pathogen effectors to summarize the mechanism through which they regulate the expression of defense-related genes and ultimately affect plant disease resistance.</p><p><strong>Conclusions: </strong>This paper presented a comprehensive overview of the crucial roles that NAC transcription factors play in regulating plant disease resistance through their involvement in diverse signaling pathways, acting as either positive or negative regulators, and thus provided references for further research on NAC transcription factors.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-05636-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The NAC transcription factor family, which is recognized as one of the largest plant-specific transcription factor families, comprises numerous members that are widely distributed among various higher plant species and play crucial regulatory roles in plant immunity.

Results: In this paper, we provided a detailed summary of the roles that NAC transcription factors play in plant immunity via plant hormone pathways and reactive oxygen species pathways. In addition, we conducted in-depth investigations into the interactions between NAC transcription factors and pathogen effectors to summarize the mechanism through which they regulate the expression of defense-related genes and ultimately affect plant disease resistance.

Conclusions: This paper presented a comprehensive overview of the crucial roles that NAC transcription factors play in regulating plant disease resistance through their involvement in diverse signaling pathways, acting as either positive or negative regulators, and thus provided references for further research on NAC transcription factors.

植物 NAC 转录因子与病原体的斗争。
背景:NAC转录因子家族是公认的最大的植物特异性转录因子家族之一,由众多成员组成,广泛分布于各种高等植物物种中,在植物免疫中发挥着重要的调控作用:本文详细总结了 NAC 转录因子通过植物激素途径和活性氧途径在植物免疫中发挥的作用。此外,我们还深入研究了 NAC 转录因子与病原体效应因子之间的相互作用,总结了它们调控防御相关基因表达并最终影响植物抗病性的机制:本文全面综述了NAC转录因子通过参与多种信号通路,以正向或负向调控因子的身份在调控植物抗病性中发挥的关键作用,从而为进一步研究NAC转录因子提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信