{"title":"Investigation and determination of CoQ10(H2) and CoQ10(H4) species from black yeast-like fungi and filamentous fungi.","authors":"Jomkwan Jumpathong, Ikuhisa Nishida, Yasuhiro Matsuo, Tomohiro Kaino, Makoto Kawamukai","doi":"10.1093/bbb/zbae149","DOIUrl":null,"url":null,"abstract":"<p><p>Coenzyme Q (CoQ) or ubiquinone functions as an electron transporter in the electron transport system in both prokaryotes and eukaryotes. The isoprenyl side chain of CoQ is modified in some organisms, especially in fungi, for optimal electron transport performance under various conditions. In this study, we investigated the side chain saturated dihydro CoQ (CoQ10(H2)) in Aureobasidium pullulans EXF-150, Sydowia polyspora NBRC 30562, and naturally isolated Plowrightia sp. A37, all of which are melanized Dothideomycetes species within the Ascomycota, and also in filamentous fungi Aspergillus oryzae and Aspergillus terreus. Plowrightia sp. A37 produced the rarely synthesized tetrahydro type CoQ10(H4), especially in glucose-rich medium, during extended cultivation in contrast to CoQ10(H2) in time-limited cultivation. Using liquid chromatography-mass spectrometry, we identified demethoxyubiquinone-H2 (DMQ(H2)) as an indicative intermediate that suggests that the side chain-saturation of CoQ occurs after the formation of DMQ and not always in the last step as previously considered.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae149","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coenzyme Q (CoQ) or ubiquinone functions as an electron transporter in the electron transport system in both prokaryotes and eukaryotes. The isoprenyl side chain of CoQ is modified in some organisms, especially in fungi, for optimal electron transport performance under various conditions. In this study, we investigated the side chain saturated dihydro CoQ (CoQ10(H2)) in Aureobasidium pullulans EXF-150, Sydowia polyspora NBRC 30562, and naturally isolated Plowrightia sp. A37, all of which are melanized Dothideomycetes species within the Ascomycota, and also in filamentous fungi Aspergillus oryzae and Aspergillus terreus. Plowrightia sp. A37 produced the rarely synthesized tetrahydro type CoQ10(H4), especially in glucose-rich medium, during extended cultivation in contrast to CoQ10(H2) in time-limited cultivation. Using liquid chromatography-mass spectrometry, we identified demethoxyubiquinone-H2 (DMQ(H2)) as an indicative intermediate that suggests that the side chain-saturation of CoQ occurs after the formation of DMQ and not always in the last step as previously considered.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).