Jin Yimin , Pu Tiantian , Zhang Tongshuai , Sun Qixu , Han Yang , Han Siyu , Wang Guangyou , Yang Shanshan , Zhang Yao
{"title":"DHA plays a protective role in cerebral ischemia–reperfusion injury by affecting macrophage/microglia type polarization","authors":"Jin Yimin , Pu Tiantian , Zhang Tongshuai , Sun Qixu , Han Yang , Han Siyu , Wang Guangyou , Yang Shanshan , Zhang Yao","doi":"10.1016/j.brainres.2024.149278","DOIUrl":null,"url":null,"abstract":"<div><div>A close correlation exists between the macrophage/microglia(MΦ/MG) polarization states and the development of cerebral ischemia and reperfusion (I/R). Therefore it is of great significance to research on how to modulate the MΦ/MG states for improved patient outcomes. In particular, regulatory mechanisms involved in this process remain to be identified. Hereby, we aim to shed light on how docosahexaenoic acid (DHA) actively modulates the switch between M1 and M2 macrophage states by restraining the NACHT-LRR-PYD-containing protein three inflammasome (NALP3). We found that NALP3-positive cells were detected in clinical human cerebral infarction tissue samples and the mouse tMCAO model. In mice after DHA treatment, the number of NALP3-positive cells was significantly reduced, significantly decreasing infarct volume and improving the postoperative physical status of mice. NALP3-positive cells were found to be MΦ/MG after co-staining with CD11b. By extracting peritoneal macrophages, it was verified that DHA inhibited the activation of NALP3 and regulated the transformation of M1 and M2 cells, thereby reducing I/R injury.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1846 ","pages":"Article 149278"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899324005328","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A close correlation exists between the macrophage/microglia(MΦ/MG) polarization states and the development of cerebral ischemia and reperfusion (I/R). Therefore it is of great significance to research on how to modulate the MΦ/MG states for improved patient outcomes. In particular, regulatory mechanisms involved in this process remain to be identified. Hereby, we aim to shed light on how docosahexaenoic acid (DHA) actively modulates the switch between M1 and M2 macrophage states by restraining the NACHT-LRR-PYD-containing protein three inflammasome (NALP3). We found that NALP3-positive cells were detected in clinical human cerebral infarction tissue samples and the mouse tMCAO model. In mice after DHA treatment, the number of NALP3-positive cells was significantly reduced, significantly decreasing infarct volume and improving the postoperative physical status of mice. NALP3-positive cells were found to be MΦ/MG after co-staining with CD11b. By extracting peritoneal macrophages, it was verified that DHA inhibited the activation of NALP3 and regulated the transformation of M1 and M2 cells, thereby reducing I/R injury.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.