Biometry study of foveal isoplanatic patch variation for adaptive optics retinal imaging.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2024-09-04 eCollection Date: 2024-10-01 DOI:10.1364/BOE.536645
Xiaojing Huang, Aubrey Hargrave, Julie Bentley, Alfredo Dubra
{"title":"Biometry study of foveal isoplanatic patch variation for adaptive optics retinal imaging.","authors":"Xiaojing Huang, Aubrey Hargrave, Julie Bentley, Alfredo Dubra","doi":"10.1364/BOE.536645","DOIUrl":null,"url":null,"abstract":"<p><p>The change in ocular wavefront aberrations with visual angle determines the isoplanatic patch, defined as the largest field of view over which diffraction-limited retinal imaging can be achieved. Here, we study how the isoplanatic patch at the foveal center varies across 32 schematic eyes, each individualized with optical biometry estimates of corneal and crystalline lens surface topography, assuming a homogeneous refractive index for the crystalline lens. The foveal isoplanatic patches were calculated using real ray tracing through 2, 4, 6 and 8 mm pupil diameters for wavelengths of 400-1200 nm, simulating five adaptive optics (AO) strategies. Three of these strategies, used in flood illumination, point-scanning, and line-scanning ophthalmoscopes, apply the same wavefront correction across the entire field of view, resulting in almost identical isoplanatic patches. Two time-division multiplexing (TDM) strategies are proposed to increase the isoplanatic patch of AO scanning ophthalmoscopes through field-varying wavefront correction. Results revealed substantial variation in isoplanatic patch size across eyes (40-500%), indicating that the field of view in AO ophthalmoscopes should be adjusted for each eye. The median isoplanatic patch size decreases with increasing pupil diameter, coarsely following a power law. No statistically significant correlations were found between isoplanatic patch size and axial length. The foveal isoplanatic patch increases linearly with wavelength, primarily due to its wavelength-dependent definition (wavefront root-mean-squared, RMS <λ/14), rather than aberration chromatism. Additionally, ray tracing reveals that in strongly ametropic eyes, induced aberrations can result in wavefront RMS errors as large as λ/3 for an 8-mm pupil, with implications for wavefront sensing, open-loop ophthalmic AO, spectacle prescription and refractive surgery.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"5674-5690"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482173/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.536645","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The change in ocular wavefront aberrations with visual angle determines the isoplanatic patch, defined as the largest field of view over which diffraction-limited retinal imaging can be achieved. Here, we study how the isoplanatic patch at the foveal center varies across 32 schematic eyes, each individualized with optical biometry estimates of corneal and crystalline lens surface topography, assuming a homogeneous refractive index for the crystalline lens. The foveal isoplanatic patches were calculated using real ray tracing through 2, 4, 6 and 8 mm pupil diameters for wavelengths of 400-1200 nm, simulating five adaptive optics (AO) strategies. Three of these strategies, used in flood illumination, point-scanning, and line-scanning ophthalmoscopes, apply the same wavefront correction across the entire field of view, resulting in almost identical isoplanatic patches. Two time-division multiplexing (TDM) strategies are proposed to increase the isoplanatic patch of AO scanning ophthalmoscopes through field-varying wavefront correction. Results revealed substantial variation in isoplanatic patch size across eyes (40-500%), indicating that the field of view in AO ophthalmoscopes should be adjusted for each eye. The median isoplanatic patch size decreases with increasing pupil diameter, coarsely following a power law. No statistically significant correlations were found between isoplanatic patch size and axial length. The foveal isoplanatic patch increases linearly with wavelength, primarily due to its wavelength-dependent definition (wavefront root-mean-squared, RMS <λ/14), rather than aberration chromatism. Additionally, ray tracing reveals that in strongly ametropic eyes, induced aberrations can result in wavefront RMS errors as large as λ/3 for an 8-mm pupil, with implications for wavefront sensing, open-loop ophthalmic AO, spectacle prescription and refractive surgery.

用于自适应光学视网膜成像的眼窝等平面斑块变化的生物测量学研究。
眼球波前像差随视角的变化决定了等光斑,等光斑被定义为可实现衍射极限视网膜成像的最大视场。在此,我们研究了眼窝中心的等平面斑块在 32 只示意眼睛中的变化情况,每只眼睛都有角膜和晶状体表面形貌的光学生物测量估计值,并假设晶状体的折射率是均匀的。在波长为 400-1200 纳米的情况下,通过 2、4、6 和 8 毫米瞳孔直径的真实光线追踪,模拟五种自适应光学(AO)策略,计算出眼窝等平面斑块。其中用于泛光照明、点扫描和线扫描眼底镜的三种策略在整个视场中应用相同的波前校正,从而产生几乎完全相同的等光斑。本文提出了两种时分复用(TDM)策略,通过场变波前校正来增加自动光学扫描眼底镜的等平面补丁。结果表明,不同眼睛的等平面光斑大小差异很大(40%-500%),这表明应针对每只眼睛调整 AO 眼科视场。随着瞳孔直径的增大,中位等平补丁大小也随之减小,大致呈幂律变化。在统计学上,等平面斑块大小与轴长之间没有发现明显的相关性。眼窝等平面斑块随波长线性增加,这主要是由于其定义与波长有关(波前均方根,RMS
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信