Semiparametric sensitivity analysis: unmeasured confounding in observational studies.

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae106
Razieh Nabi, Matteo Bonvini, Edward H Kennedy, Ming-Yueh Huang, Marcela Smid, Daniel O Scharfstein
{"title":"Semiparametric sensitivity analysis: unmeasured confounding in observational studies.","authors":"Razieh Nabi, Matteo Bonvini, Edward H Kennedy, Ming-Yueh Huang, Marcela Smid, Daniel O Scharfstein","doi":"10.1093/biomtc/ujae106","DOIUrl":null,"url":null,"abstract":"<p><p>Establishing cause-effect relationships from observational data often relies on untestable assumptions. It is crucial to know whether, and to what extent, the conclusions drawn from non-experimental studies are robust to potential unmeasured confounding. In this paper, we focus on the average causal effect (ACE) as our target of inference. We generalize the sensitivity analysis approach developed by Robins et al., Franks et al., and Zhou and Yao. We use semiparametric theory to derive the non-parametric efficient influence function of the ACE, for fixed sensitivity parameters. We use this influence function to construct a one-step, split sample, truncated estimator of the ACE. Our estimator depends on semiparametric models for the distribution of the observed data; importantly, these models do not impose any restrictions on the values of sensitivity analysis parameters. We establish sufficient conditions ensuring that our estimator has $\\sqrt{n}$ asymptotics. We use our methodology to evaluate the causal effect of smoking during pregnancy on birth weight. We also evaluate the performance of estimation procedure in a simulation study.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae106","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Establishing cause-effect relationships from observational data often relies on untestable assumptions. It is crucial to know whether, and to what extent, the conclusions drawn from non-experimental studies are robust to potential unmeasured confounding. In this paper, we focus on the average causal effect (ACE) as our target of inference. We generalize the sensitivity analysis approach developed by Robins et al., Franks et al., and Zhou and Yao. We use semiparametric theory to derive the non-parametric efficient influence function of the ACE, for fixed sensitivity parameters. We use this influence function to construct a one-step, split sample, truncated estimator of the ACE. Our estimator depends on semiparametric models for the distribution of the observed data; importantly, these models do not impose any restrictions on the values of sensitivity analysis parameters. We establish sufficient conditions ensuring that our estimator has $\sqrt{n}$ asymptotics. We use our methodology to evaluate the causal effect of smoking during pregnancy on birth weight. We also evaluate the performance of estimation procedure in a simulation study.

半参数敏感性分析:观察性研究中的未测量混杂因素。
从观察数据中建立因果关系往往依赖于无法检验的假设。了解从非实验研究中得出的结论是否以及在多大程度上对潜在的未测量混杂因素具有稳健性至关重要。在本文中,我们将平均因果效应(ACE)作为推论目标。我们推广了罗宾斯等人、弗兰克斯等人以及周和姚所开发的敏感性分析方法。我们使用半参数理论推导出固定敏感度参数下 ACE 的非参数有效影响函数。我们利用该影响函数构建了一个一步法、分割样本、截断的 ACE 估计器。我们的估计器依赖于观测数据分布的半参数模型;重要的是,这些模型对灵敏度分析参数值不施加任何限制。我们建立了充分条件,确保我们的估计器具有 $\sqrt{n}$ 渐进性。我们使用我们的方法来评估孕期吸烟对出生体重的因果效应。我们还在模拟研究中评估了估计程序的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信