Genetic diversity assessment of Palestinian safflower (Carthamus tinctorius L.) utilizing DAMD molecular markers.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Biotechnology Letters Pub Date : 2024-12-01 Epub Date: 2024-10-19 DOI:10.1007/s10529-024-03538-4
Yamen A S Hamdan
{"title":"Genetic diversity assessment of Palestinian safflower (Carthamus tinctorius L.) utilizing DAMD molecular markers.","authors":"Yamen A S Hamdan","doi":"10.1007/s10529-024-03538-4","DOIUrl":null,"url":null,"abstract":"<p><p>The current knowledge about Palestinian safflower landraces is relatively limited in terms of phenotypic and molecular characterization, however, the purpose of this investigation was to determine the amount of genetic diversity in eighteen local safflower landraces using seven DAMD markers. The banding patterns for each primer were scored and compiled into a data matrix. Subsequently, the data matrix was analyzed using UPGMA cluster analysis to identify distinct genetic groups among the landraces. In total, 88 DNA fragments were found, and there were an average of 12.6 loci per assay unit observed. Resolving Power (RP) revealed an average of 7.09 was determined, with the highest RP value at 13.3. The dendrogram obtained from DAMD data divided the landraces into three main clusters, denoted as I, II and III. The first cluster (I) consisted of one genotype (PTUK.SA16). The second cluster (II) consisted of two genotypes (PTUK.SA13 and PTUK.SA10). The third cluster (III) was later partitioned into two distinct sub-clusters, which are III.a and III.b. Sub-cluster III.a comprised seven genotypes (PTUK.SA4, PTUK.SA9, PTUK.SA8, PTUK.SA7, PTUK.SA6, PTUK.SA5 and PTUK.SA3). While Sub-cluster III.b consisted of eight genotypes (PTUK.SA15, PTUK.SA18, PTUK.SA17, PTUK.SA14, PTUK.SA12, PTUK.SA2, PTUK.SA11, and PTUK.SA1). This research assess the genetic diversity of Palestinian safflower landraces using PCR-based DAMD markers. The remarkable level of polymorphism detected using DAMD markers demonstrated their effectiveness in distinguishing between Palestinian safflower genotypes.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"1293-1302"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03538-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The current knowledge about Palestinian safflower landraces is relatively limited in terms of phenotypic and molecular characterization, however, the purpose of this investigation was to determine the amount of genetic diversity in eighteen local safflower landraces using seven DAMD markers. The banding patterns for each primer were scored and compiled into a data matrix. Subsequently, the data matrix was analyzed using UPGMA cluster analysis to identify distinct genetic groups among the landraces. In total, 88 DNA fragments were found, and there were an average of 12.6 loci per assay unit observed. Resolving Power (RP) revealed an average of 7.09 was determined, with the highest RP value at 13.3. The dendrogram obtained from DAMD data divided the landraces into three main clusters, denoted as I, II and III. The first cluster (I) consisted of one genotype (PTUK.SA16). The second cluster (II) consisted of two genotypes (PTUK.SA13 and PTUK.SA10). The third cluster (III) was later partitioned into two distinct sub-clusters, which are III.a and III.b. Sub-cluster III.a comprised seven genotypes (PTUK.SA4, PTUK.SA9, PTUK.SA8, PTUK.SA7, PTUK.SA6, PTUK.SA5 and PTUK.SA3). While Sub-cluster III.b consisted of eight genotypes (PTUK.SA15, PTUK.SA18, PTUK.SA17, PTUK.SA14, PTUK.SA12, PTUK.SA2, PTUK.SA11, and PTUK.SA1). This research assess the genetic diversity of Palestinian safflower landraces using PCR-based DAMD markers. The remarkable level of polymorphism detected using DAMD markers demonstrated their effectiveness in distinguishing between Palestinian safflower genotypes.

利用 DAMD 分子标记评估巴勒斯坦红花(Carthamus tinctorius L.)的遗传多样性。
目前,有关巴勒斯坦红花陆地品种的表型和分子特征描述方面的知识相对有限,但本研究的目的是利用 7 个 DAMD 标记确定 18 个当地红花陆地品种的遗传多样性。对每个引物的条带模式进行了评分,并汇编成数据矩阵。随后,利用 UPGMA 聚类分析法对数据矩阵进行分析,以确定不同品种间的遗传群体。总共发现了 88 个 DNA 片段,平均每个检测单位观察到 12.6 个基因位点。测定结果显示,平均分辨力为 7.09,最高分辨力为 13.3。根据 DAMD 数据绘制的树枝状图将陆稻品种分为三大类,分别为 I、II 和 III。第一个聚类(I)包括一个基因型(PTUK.SA16)。第二组(II)由两个基因型(PTUK.SA13 和 PTUK.SA10)组成。第三个群组(III)后来被划分为两个不同的子群组,即 III.a 和 III.b。子群组 III.a 包括 7 个基因型(PTUK.SA4、PTUK.SA9、PTUK.SA8、PTUK.SA7、PTUK.SA6、PTUK.SA5 和 PTUK.SA3)。亚群 III.b 包括 8 个基因型(PTUK.SA15、PTUK.SA18、PTUK.SA17、PTUK.SA14、PTUK.SA12、PTUK.SA2、PTUK.SA11 和 PTUK.SA1)。该研究利用基于 PCR 的 DAMD 标记评估了巴勒斯坦红花品种的遗传多样性。利用 DAMD 标记检测到的显著多态性水平表明,它们在区分巴勒斯坦红花基因型方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信