Vid Mlakar, Laurence Lesne, Stefania Vossio, Isabelle Dupanloup, Yvonne Gloor, Dimitri Moreau, Marc Ansari
{"title":"Microcavity-assisted cloning (MAC) of hard-to-clone HepG2 cell lines: cloning made easy.","authors":"Vid Mlakar, Laurence Lesne, Stefania Vossio, Isabelle Dupanloup, Yvonne Gloor, Dimitri Moreau, Marc Ansari","doi":"10.1186/s12896-024-00911-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cloning is a key molecular biology procedure for obtaining a genetically homogenous population of organisms or cell lines. It requires the expansion of new cell populations starting from single genetically modified cells. Despite the technical progress, cloning of many cell lines remains difficult. Cloning often fails either due to the strenuous conditions associated with manipulating cells or because many cells don't tolerate a single-cell state. Here we describe a new cloning method utilizing low adhesion microcavity plates. This new technique, named microcavity-assisted cloning (MAC) was developed to clone difficult-to-clone HepG2 cells. The clones were produced following CRISPR/Cas9 knockout of the GSTA1 gene by a random distribution of 200, 400, and 800 cells into 550 microcavities of a 24-well low adhesion plate originally designed for the culture of spheroids. The knockout of GSTA1 was verified at the protein level using Western blotting. The advantages of the MAC method are its low cost, ease of the procedure, and the possibility of scaling up the throughput and automatization.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"81"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481743/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-024-00911-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cloning is a key molecular biology procedure for obtaining a genetically homogenous population of organisms or cell lines. It requires the expansion of new cell populations starting from single genetically modified cells. Despite the technical progress, cloning of many cell lines remains difficult. Cloning often fails either due to the strenuous conditions associated with manipulating cells or because many cells don't tolerate a single-cell state. Here we describe a new cloning method utilizing low adhesion microcavity plates. This new technique, named microcavity-assisted cloning (MAC) was developed to clone difficult-to-clone HepG2 cells. The clones were produced following CRISPR/Cas9 knockout of the GSTA1 gene by a random distribution of 200, 400, and 800 cells into 550 microcavities of a 24-well low adhesion plate originally designed for the culture of spheroids. The knockout of GSTA1 was verified at the protein level using Western blotting. The advantages of the MAC method are its low cost, ease of the procedure, and the possibility of scaling up the throughput and automatization.
期刊介绍:
BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.