An Updated Review Summarizing the Anticancer Potential of Poly(Lactic-co-Glycolic Acid) (PLGA) Based Curcumin, Epigallocatechin Gallate, and Resveratrol Nanocarriers.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2024-10-17 DOI:10.1002/bip.23637
Pratibha Pandey, Meenakshi Verma, Sorabh Lakhanpal, Shivam Pandey, M Ravi Kumar, Mahakshit Bhat, Shilpa Sharma, Mir Waqas Alam, Fahad Khan
{"title":"An Updated Review Summarizing the Anticancer Potential of Poly(Lactic-co-Glycolic Acid) (PLGA) Based Curcumin, Epigallocatechin Gallate, and Resveratrol Nanocarriers.","authors":"Pratibha Pandey, Meenakshi Verma, Sorabh Lakhanpal, Shivam Pandey, M Ravi Kumar, Mahakshit Bhat, Shilpa Sharma, Mir Waqas Alam, Fahad Khan","doi":"10.1002/bip.23637","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of nanoformulations derived from natural products for the treatment of many human diseases, including cancer, is a rapidly developing field. Conventional therapies used for cancer treatment have limited efficacy and a greater number of adverse effects. Hence, it is imperative to develop innovative anticancer drugs with superior effectiveness. Among the diverse array of natural anticancer compounds, resveratrol, curcumin, and epigallocatechin gallate (EGCG) have gained considerable attention in recent years. Despite their strong anticancer properties, medicinally significant phytochemicals such as resveratrol, curcumin, and EGCG have certain disadvantages, such as limited solubility in water, stability, and bioavailability problems. Encapsulating these phytochemicals in poly(lactic-co-glycolic acid) (PLGA), a polymer that is nontoxic, biodegradable, and biocompatible, is an effective method for delivering medication to the tumor location. In addition, PLGA nanoparticles can be modified with targeting molecules to specifically target cancer cells, thereby improving the effectiveness of phytochemicals in fighting tumors. Combining plant-based medicine (phytotherapy) with nanotechnology in a clinical environment has the potential to enhance the effectiveness of drugs and improve the overall health outcomes of patients. Therefore, it is crucial to have a comprehensive understanding of the different aspects and recent advancements in using PLGA-based nanocarriers for delivering anticancer phytochemicals. This review addresses the most recent advancements in PLGA-based delivery systems for resveratrol, EGCG, and curcumin, emphasizing the possibility of resolving issues related to the therapeutic efficacy and bioavailability of these compounds.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bip.23637","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of nanoformulations derived from natural products for the treatment of many human diseases, including cancer, is a rapidly developing field. Conventional therapies used for cancer treatment have limited efficacy and a greater number of adverse effects. Hence, it is imperative to develop innovative anticancer drugs with superior effectiveness. Among the diverse array of natural anticancer compounds, resveratrol, curcumin, and epigallocatechin gallate (EGCG) have gained considerable attention in recent years. Despite their strong anticancer properties, medicinally significant phytochemicals such as resveratrol, curcumin, and EGCG have certain disadvantages, such as limited solubility in water, stability, and bioavailability problems. Encapsulating these phytochemicals in poly(lactic-co-glycolic acid) (PLGA), a polymer that is nontoxic, biodegradable, and biocompatible, is an effective method for delivering medication to the tumor location. In addition, PLGA nanoparticles can be modified with targeting molecules to specifically target cancer cells, thereby improving the effectiveness of phytochemicals in fighting tumors. Combining plant-based medicine (phytotherapy) with nanotechnology in a clinical environment has the potential to enhance the effectiveness of drugs and improve the overall health outcomes of patients. Therefore, it is crucial to have a comprehensive understanding of the different aspects and recent advancements in using PLGA-based nanocarriers for delivering anticancer phytochemicals. This review addresses the most recent advancements in PLGA-based delivery systems for resveratrol, EGCG, and curcumin, emphasizing the possibility of resolving issues related to the therapeutic efficacy and bioavailability of these compounds.

最新综述:基于聚乳酸-乙醇酸(PLGA)的姜黄素、表没食子儿茶素没食子酸酯和白藜芦醇纳米载体的抗癌潜力。
利用从天然产品中提取的纳米制剂治疗包括癌症在内的多种人类疾病是一个快速发展的领域。用于治疗癌症的传统疗法疗效有限,不良反应较多。因此,开发具有卓越疗效的创新抗癌药物势在必行。在各种天然抗癌化合物中,白藜芦醇、姜黄素和表没食子儿茶素没食子酸酯(EGCG)近年来备受关注。尽管白藜芦醇、姜黄素和表没食子儿茶素没食子酸酯等植物化学物质具有很强的抗癌特性,但它们也有一些缺点,如水溶性有限、稳定性和生物利用度等问题。聚乳酸-共聚乙醇酸(PLGA)是一种无毒、可生物降解且具有生物相容性的聚合物,将这些植物化学物质封装在聚乳酸-共聚乙醇酸(PLGA)中是将药物输送到肿瘤部位的有效方法。此外,PLGA 纳米粒子还可以用靶向分子进行修饰,以特异性地靶向癌细胞,从而提高植物化学物质抗肿瘤的效果。在临床环境中将植物药物(植物疗法)与纳米技术结合起来,有可能提高药物的疗效,改善患者的整体健康状况。因此,全面了解使用基于 PLGA 的纳米载体递送抗癌植物化学物质的不同方面和最新进展至关重要。本综述探讨了基于 PLGA 的白藜芦醇、EGCG 和姜黄素递送系统的最新进展,强调了解决这些化合物的疗效和生物利用度相关问题的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信