The interdisciplinary approach to investigate bona fide agent(s) in flavonoids or alkaloids in treating HCC.

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ki-Kwang Oh, Sang-Jun Yoon, Seol Hee Song, Jeong Ha Park, Jeong Su Kim, Min Ju Kim, Goo-Hyun Kwon, Dong Joon Kim, Ki-Tae Suk
{"title":"The interdisciplinary approach to investigate bona fide agent(s) in flavonoids or alkaloids in treating HCC.","authors":"Ki-Kwang Oh, Sang-Jun Yoon, Seol Hee Song, Jeong Ha Park, Jeong Su Kim, Min Ju Kim, Goo-Hyun Kwon, Dong Joon Kim, Ki-Tae Suk","doi":"10.1080/21691401.2024.2413536","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, the treatment of hepatocellular carcinoma (HCC) is yet to be determined, alternatively, flavonoids or alkaloids from nature have been considered as significant mediators against HCC. In the scenario, we pioneered the most significant agent(s) in either flavonoid(s) or alkaloid(s) against HCC with cheminformatics, bioinformatics, computer screening tools and quantum chemistry concept. In prospect, the intent was to provide the theoretical scaffold in the myriad natural organic molecules. The cheminformatics (natural product activity & species source database (NPASS), SwissADME, PubChem, Similarity Ensemble Approach (SEA) and SwissTargetPrediction (STP)), bioinformatics (DisGeNET, OMIM and STRING) were employed to underpin promising therapeutic components. The protein-protein interaction (PPI) network to identify the relationships between each target and a bubble chart to elucidate key signalling pathway(s) was constructed via STRING database. Ultimately, computer screening tools (PyMOL and AutoDockTools 1.5.6) and quantum chemistry (GaussView 6 and Gaussian) concept were adopted to decrypt the key molecule(s), target(s) and key mechanism(s). The most significant target was AKT1 in PPI network, AKT1 - isorhamnetin, MCL1 - ochrindole D and PIM1 - heyneanine hydroxyindolenine were the most stable conformers to antagonize JAK-STAT signalling pathway. This study provides scientific manifestation to facilitate the clinical test despite the enormous complexity of herbal medicine, and the devised platform for further clarifying the bioactive(s) and mechanism(s) against HCC.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"500-511"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2024.2413536","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the treatment of hepatocellular carcinoma (HCC) is yet to be determined, alternatively, flavonoids or alkaloids from nature have been considered as significant mediators against HCC. In the scenario, we pioneered the most significant agent(s) in either flavonoid(s) or alkaloid(s) against HCC with cheminformatics, bioinformatics, computer screening tools and quantum chemistry concept. In prospect, the intent was to provide the theoretical scaffold in the myriad natural organic molecules. The cheminformatics (natural product activity & species source database (NPASS), SwissADME, PubChem, Similarity Ensemble Approach (SEA) and SwissTargetPrediction (STP)), bioinformatics (DisGeNET, OMIM and STRING) were employed to underpin promising therapeutic components. The protein-protein interaction (PPI) network to identify the relationships between each target and a bubble chart to elucidate key signalling pathway(s) was constructed via STRING database. Ultimately, computer screening tools (PyMOL and AutoDockTools 1.5.6) and quantum chemistry (GaussView 6 and Gaussian) concept were adopted to decrypt the key molecule(s), target(s) and key mechanism(s). The most significant target was AKT1 in PPI network, AKT1 - isorhamnetin, MCL1 - ochrindole D and PIM1 - heyneanine hydroxyindolenine were the most stable conformers to antagonize JAK-STAT signalling pathway. This study provides scientific manifestation to facilitate the clinical test despite the enormous complexity of herbal medicine, and the devised platform for further clarifying the bioactive(s) and mechanism(s) against HCC.

采用跨学科方法研究黄酮类或生物碱中治疗 HCC 的真正药物。
目前,治疗肝细胞癌(HCC)的方法尚未确定,而自然界中的类黄酮或生物碱被认为是治疗 HCC 的重要介质。在这一方案中,我们利用化学信息学、生物信息学、计算机筛选工具和量子化学概念,在类黄酮或生物碱中开创了抗 HCC 的最重要药物。展望未来,目的是为无数天然有机分子提供理论支架。研究人员利用化学信息学(天然产物活性和物种来源数据库(NPASS)、SwissADME、PubChem、相似性组合方法(SEA)和 SwissTargetPrediction(STP))、生物信息学(DisGeNET、OMIM 和 STRING)来支持有前景的治疗成分。通过 STRING 数据库构建了蛋白质-蛋白质相互作用(PPI)网络,以确定每个靶点之间的关系,并绘制了气泡图,以阐明关键信号通路。最后,采用计算机筛选工具(PyMOL 和 AutoDockTools 1.5.6)和量子化学概念(GaussView 6 和 Gaussian)解密了关键分子、靶点和关键机制。PPI网络中最重要的靶点是AKT1,AKT1 - isorhamnetin、MCL1 - ochrindole D和PIM1 - heyneanine hydroxyindolenine是拮抗JAK-STAT信号通路最稳定的构象。尽管中草药非常复杂,但这项研究为临床试验提供了科学依据,并为进一步阐明抗 HCC 的生物活性和机制提供了平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信