Camila da Costa Barros de Souza, Erica Souto Abreu Lima, Andrés Calderín García, Nelson Moura Brasil do Amaral Sobrinho
{"title":"Role of Organic Fertilizer in the Transfer of Lead to Vegetables Produced in Tropical Mountain Agroecosystems.","authors":"Camila da Costa Barros de Souza, Erica Souto Abreu Lima, Andrés Calderín García, Nelson Moura Brasil do Amaral Sobrinho","doi":"10.1007/s00244-024-01094-6","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the relationship between the aerobic transformation of organic matter (OM) and the bioavailability of lead to plants may allow the safe application of organic fertilizers (OF) in agriculture. The present study aimed to elucidate the relationship of different OM structures with Pb, revealing the action of OF (poultry litter) on Pb dynamics, presenting the effects of OM transformations on bioavailability and transfer to vegetables produced in tropical mountain agroecosystems (TMA). The association of Pb with hydrophilic structures (CAlk-O and CAlk-di-O) during the aerobic transformation of poultry litter (PL) contributes to the increase in the water-soluble form of this metal (3.17-15.30%). The structural changes promoted by the transformation of OM, in addition to reducing the adsorption capacity of Pb in PL (Kd reduction from 1135.50 to 87.49), favor the formation of outer-sphere complexes. PL that have a more labile structure, i.e., those that are less humified, have greater affinity for Pb. The greater affinity of Pb for labile structures that are preserved in PL during OM transformations contributed to its increase and transport to edible plant parts. Considering the edible parts of vegetables grown in TMA and fertilized with fresh PL, 100% of broccoli, 91.78% of cabbage, 80.00% of tomato, 65.96% of parsley, 49.19% of lettuce, and 32.88% of cauliflower showed Pb contamination that exceeded the permitted level. Therefore, OF contributes to lead contamination of food produced in TMA, representing a risk to human health. Studies are needed to propose additional treatments for this residue before its use.</p>","PeriodicalId":8377,"journal":{"name":"Archives of Environmental Contamination and Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00244-024-01094-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the relationship between the aerobic transformation of organic matter (OM) and the bioavailability of lead to plants may allow the safe application of organic fertilizers (OF) in agriculture. The present study aimed to elucidate the relationship of different OM structures with Pb, revealing the action of OF (poultry litter) on Pb dynamics, presenting the effects of OM transformations on bioavailability and transfer to vegetables produced in tropical mountain agroecosystems (TMA). The association of Pb with hydrophilic structures (CAlk-O and CAlk-di-O) during the aerobic transformation of poultry litter (PL) contributes to the increase in the water-soluble form of this metal (3.17-15.30%). The structural changes promoted by the transformation of OM, in addition to reducing the adsorption capacity of Pb in PL (Kd reduction from 1135.50 to 87.49), favor the formation of outer-sphere complexes. PL that have a more labile structure, i.e., those that are less humified, have greater affinity for Pb. The greater affinity of Pb for labile structures that are preserved in PL during OM transformations contributed to its increase and transport to edible plant parts. Considering the edible parts of vegetables grown in TMA and fertilized with fresh PL, 100% of broccoli, 91.78% of cabbage, 80.00% of tomato, 65.96% of parsley, 49.19% of lettuce, and 32.88% of cauliflower showed Pb contamination that exceeded the permitted level. Therefore, OF contributes to lead contamination of food produced in TMA, representing a risk to human health. Studies are needed to propose additional treatments for this residue before its use.
期刊介绍:
Archives of Environmental Contamination and Toxicology provides a place for the publication of timely, detailed, and definitive scientific studies pertaining to the source, transport, fate and / or effects of contaminants in the environment. The journal will consider submissions dealing with new analytical and toxicological techniques that advance our understanding of the source, transport, fate and / or effects of contaminants in the environment. AECT will now consider mini-reviews (where length including references is less than 5,000 words), which highlight case studies, a geographic topic of interest, or a timely subject of debate. AECT will also consider Special Issues on subjects of broad interest. The journal strongly encourages authors to ensure that their submission places a strong emphasis on ecosystem processes; submissions limited to technical aspects of such areas as toxicity testing for single chemicals, wastewater effluent characterization, human occupation exposure, or agricultural phytotoxicity are unlikely to be considered.