Chieh-Wen Lo , Omri Kariv , Chenzhou Hao , Karen Anbro Gammeltoft , Jens Bukh , Judith Gottwein , Michael Westberg , Michael Z. Lin , Shirit Einav
{"title":"Replication capacity and susceptibility of nirmatrelvir-resistant mutants to next-generation Mpro inhibitors in a SARS-CoV-2 replicon system","authors":"Chieh-Wen Lo , Omri Kariv , Chenzhou Hao , Karen Anbro Gammeltoft , Jens Bukh , Judith Gottwein , Michael Westberg , Michael Z. Lin , Shirit Einav","doi":"10.1016/j.antiviral.2024.106022","DOIUrl":null,"url":null,"abstract":"<div><div>There is an ongoing need to expand the anti-SARS-CoV-2 armamentarium to include agents capable of suppressing replication of drug-resistant mutants emerging during monotherapy with approved direct-acting antivirals. Using a subgenomic SARS-CoV-2 replicon system, we studied the RNA replication capacity of nirmatrelvir (NTV)-resistant mutants and their susceptibility to next-generation Mpro inhibitors, including ibuzatrelvir (ITV), ensitrelvir (ETV), and ML2006a4. Our findings revealed that E166V Mpro mutants reduced viral RNA replication, whereas other Mpro mutations retained or increased the replication capacity, suggesting the potential of the latter to dominate under NTV selective pressure. Except for having an advantage against E166A mutants, ITV largely showed the same mutational sensitivity as NTV. ETV was more effective than NTV against E166V mutants but less effective against S144A, E166A, and L167F mutants. ML2006a4 demonstrated the most effective suppression across most mutants (S144A, E166V, S144A + L50F, E166 A/V + L50F, L167F + L50F, and E166A + L167F + L50F). Thus, ML2006a4 represents an attractive investigational candidate against clinically relevant NTV-resistant SARS-CoV-2 mutants.</div></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"231 ","pages":"Article 106022"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224002316","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
There is an ongoing need to expand the anti-SARS-CoV-2 armamentarium to include agents capable of suppressing replication of drug-resistant mutants emerging during monotherapy with approved direct-acting antivirals. Using a subgenomic SARS-CoV-2 replicon system, we studied the RNA replication capacity of nirmatrelvir (NTV)-resistant mutants and their susceptibility to next-generation Mpro inhibitors, including ibuzatrelvir (ITV), ensitrelvir (ETV), and ML2006a4. Our findings revealed that E166V Mpro mutants reduced viral RNA replication, whereas other Mpro mutations retained or increased the replication capacity, suggesting the potential of the latter to dominate under NTV selective pressure. Except for having an advantage against E166A mutants, ITV largely showed the same mutational sensitivity as NTV. ETV was more effective than NTV against E166V mutants but less effective against S144A, E166A, and L167F mutants. ML2006a4 demonstrated the most effective suppression across most mutants (S144A, E166V, S144A + L50F, E166 A/V + L50F, L167F + L50F, and E166A + L167F + L50F). Thus, ML2006a4 represents an attractive investigational candidate against clinically relevant NTV-resistant SARS-CoV-2 mutants.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.