{"title":"Full-length 16S rRNA gene amplicon analysis of gut microbiota in pigs fed with different diets in growing and finishing stages.","authors":"Han-Sheng Wang, Sra-Yh Shih, Yu-Ling Huang, Chia-Chieh Chang, HsinYuan Tsai","doi":"10.1080/10495398.2024.2414299","DOIUrl":null,"url":null,"abstract":"<p><p>The present study utilized full-length 16S rRNA gene sequencing to investigate the impact of dietary protein content on the composition and function of gut microbiota, and to analyze the gut microbiota of pigs in the growing (30 kg) and finishing (120 kg) stages under different feeding conditions. The results indicated that the gut microbiota was significantly different between pigs fed high- and low-protein diets. Comparing fecal samples from pigs at 30 and 120 kg, pigs at 30 kg showed a significant increase in the relative abundance of <i>Clostridium butyricum</i>, whereas at 120 kg, the abundance of <i>Lactobacillus reuteri</i> and <i>Lactobacillus johnsonii</i> decreased. To access the functional profiles and metabolic pathways based on amplicon sequence variants (ASVs), the microbiome of the 120 kg exhibited significant enrichments in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to metabolism-related category, including Alanine, aspartate and glutamate metabolism, Tyrosine and Thiamin metabolism, and Inositol phosphate metabolism. Meanwhile, analysis using the MetaCyc database showed that the metabolic pathways of the 30 kg group were significantly distinct when compared to the 120 kg of fecal samples. Overall, the findings indicated that the gut microbiota composition and function in the 30 and 120 kg fecal samples were markedly shaped by different dietary protein levels.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"35 1","pages":"2414299"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2024.2414299","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The present study utilized full-length 16S rRNA gene sequencing to investigate the impact of dietary protein content on the composition and function of gut microbiota, and to analyze the gut microbiota of pigs in the growing (30 kg) and finishing (120 kg) stages under different feeding conditions. The results indicated that the gut microbiota was significantly different between pigs fed high- and low-protein diets. Comparing fecal samples from pigs at 30 and 120 kg, pigs at 30 kg showed a significant increase in the relative abundance of Clostridium butyricum, whereas at 120 kg, the abundance of Lactobacillus reuteri and Lactobacillus johnsonii decreased. To access the functional profiles and metabolic pathways based on amplicon sequence variants (ASVs), the microbiome of the 120 kg exhibited significant enrichments in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to metabolism-related category, including Alanine, aspartate and glutamate metabolism, Tyrosine and Thiamin metabolism, and Inositol phosphate metabolism. Meanwhile, analysis using the MetaCyc database showed that the metabolic pathways of the 30 kg group were significantly distinct when compared to the 120 kg of fecal samples. Overall, the findings indicated that the gut microbiota composition and function in the 30 and 120 kg fecal samples were markedly shaped by different dietary protein levels.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes