Neuroinflammation mechanism underlying neuropathic pain: the role of mesenchymal stem cell in neuroglia.

IF 3.1 Q2 NEUROSCIENCES
AIMS Neuroscience Pub Date : 2024-07-12 eCollection Date: 2024-01-01 DOI:10.3934/Neuroscience.2024015
Ida Ayu Sri Wijayanti, I Made Oka Adnyana, I Putu Eka Widyadharma, I Gede Eka Wiratnaya, Tjokorda Gde Bagus Mahadewa, I Nyoman Mantik Astawa
{"title":"Neuroinflammation mechanism underlying neuropathic pain: the role of mesenchymal stem cell in neuroglia.","authors":"Ida Ayu Sri Wijayanti, I Made Oka Adnyana, I Putu Eka Widyadharma, I Gede Eka Wiratnaya, Tjokorda Gde Bagus Mahadewa, I Nyoman Mantik Astawa","doi":"10.3934/Neuroscience.2024015","DOIUrl":null,"url":null,"abstract":"<p><p>Pain is an essential aspect of the body's physiological response to unpleasant noxious stimuli from either external sustained injuries or an internal disease condition that occurs within the body. Generally, pain is temporary. However, in patients with neuropathic pain, the experienced pain is persistent and uncontrollable, with an unsatisfactory treatment effectiveness. The activation of the immune system is a crucial factor in both central and peripheral neuropathic pain. The immune response plays an important role in the progression of the stages of neuropathic pain, and acts not only as pain mediators, but also produce analgesic molecules. Neuropathic pain has long been described as a result of dysfunctional nerve activities. However, there is substantial evidence indicating that the regulation of hyperalgesia is mediated by astrocytes and microglia activation. Mesenchymal stem cells currently hold an optimal potential in managing pain, as they can migrate to damaged tissues and have a robust immunosuppressive role for autologous or heterologous transplantation. Moreover, mesenchymal stem cells revealed their immunomodulatory capabilities by secreting growth factors and cytokines through direct cell interactions. The main idea underlying the use of mesenchymal stem cells in pain management is that these cells can replace damaged nerve cells by releasing neurotrophic factors. This property makes them the perfect option to modulate and treat neuropathic pain, which is notoriously difficult to treat.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 3","pages":"226-243"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486618/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/Neuroscience.2024015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pain is an essential aspect of the body's physiological response to unpleasant noxious stimuli from either external sustained injuries or an internal disease condition that occurs within the body. Generally, pain is temporary. However, in patients with neuropathic pain, the experienced pain is persistent and uncontrollable, with an unsatisfactory treatment effectiveness. The activation of the immune system is a crucial factor in both central and peripheral neuropathic pain. The immune response plays an important role in the progression of the stages of neuropathic pain, and acts not only as pain mediators, but also produce analgesic molecules. Neuropathic pain has long been described as a result of dysfunctional nerve activities. However, there is substantial evidence indicating that the regulation of hyperalgesia is mediated by astrocytes and microglia activation. Mesenchymal stem cells currently hold an optimal potential in managing pain, as they can migrate to damaged tissues and have a robust immunosuppressive role for autologous or heterologous transplantation. Moreover, mesenchymal stem cells revealed their immunomodulatory capabilities by secreting growth factors and cytokines through direct cell interactions. The main idea underlying the use of mesenchymal stem cells in pain management is that these cells can replace damaged nerve cells by releasing neurotrophic factors. This property makes them the perfect option to modulate and treat neuropathic pain, which is notoriously difficult to treat.

神经性疼痛的神经炎症机制:间充质干细胞在神经胶质细胞中的作用。
疼痛是人体对外界持续伤害或体内疾病引起的不愉快有害刺激的生理反应的一个重要方面。一般来说,疼痛是暂时的。然而,神经病理性疼痛患者所经历的疼痛是持续性的,无法控制,治疗效果也不理想。免疫系统的激活是中枢和外周神经病理性疼痛的关键因素。免疫反应在神经病理性疼痛各阶段的进展中起着重要作用,它不仅是疼痛介质,还能产生镇痛分子。长期以来,神经病理性疼痛一直被描述为神经活动失调的结果。然而,有大量证据表明,超痛感的调节是由星形胶质细胞和小胶质细胞激活介导的。间充质干细胞目前在控制疼痛方面具有最佳潜力,因为它们可以迁移到受损组织,并在自体或异体移植中具有强大的免疫抑制作用。此外,间充质干细胞通过直接细胞相互作用分泌生长因子和细胞因子,显示了其免疫调节能力。间充质干细胞用于疼痛治疗的主要理念是,这些细胞可以通过释放神经营养因子来替代受损的神经细胞。这一特性使它们成为调节和治疗众所周知难以治疗的神经性疼痛的完美选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Neuroscience
AIMS Neuroscience NEUROSCIENCES-
CiteScore
4.20
自引率
0.00%
发文量
26
审稿时长
8 weeks
期刊介绍: AIMS Neuroscience is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers from all areas in the field of neuroscience. The primary focus is to provide a forum in which to expedite the speed with which theoretical neuroscience progresses toward generating testable hypotheses. In the presence of current and developing technology that offers unprecedented access to functions of the nervous system at all levels, the journal is designed to serve the role of providing the widest variety of the best theoretical views leading to suggested studies. Single blind peer review is provided for all articles and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信