Hebatallah M Hassaan, Angela Pyle, Nihal Almenabawy, Fiona M Robertson, Nour Elkhateeb, Marian Y Girgis, Iman Gamal El Din Mahmoud, Fawzia Amer, Mona Samaha, Yara Shaheen, Walaa ElNaggar, Doaa Abdoh, Dina Ahmed Mehaney, Iman Ehsan Abdel Meguid, Robert W Taylor, Robert McFarland, Laila Selim
{"title":"Clinical and Genetic Spectrum of Patients With Mitochondrial Disease in a Pediatric Egyptian Cohort: Novel Variants and Phenotypic Expansion.","authors":"Hebatallah M Hassaan, Angela Pyle, Nihal Almenabawy, Fiona M Robertson, Nour Elkhateeb, Marian Y Girgis, Iman Gamal El Din Mahmoud, Fawzia Amer, Mona Samaha, Yara Shaheen, Walaa ElNaggar, Doaa Abdoh, Dina Ahmed Mehaney, Iman Ehsan Abdel Meguid, Robert W Taylor, Robert McFarland, Laila Selim","doi":"10.1002/ajmg.a.63881","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial disorders exhibit clinical and genetic diversity. Nearly 400 distinct genes, located in both the mitochondrial and nuclear genomes, harbor pathogenic variants that can produce a broad spectrum of mitochondrial diseases. This work aims to explore the genetic etiology of a cohort of Egyptian pediatric patients who were clinically suspected of having a mitochondrial disorder. A total of 49 patients from 44 unrelated families were studied. Selection criteria included age below 18 years and meeting Morava criteria (a score ≥ 3). The mitochondrial disease criteria (MDC) have been developed to quantify the clinical picture and evaluate the probability of an underlying mitochondrial disorder Exome sequencing, including mitochondrial genome sequencing, was carried out for each participant. Causative variants likely responsible for the phenotypes were identified in 68% of the study population. The mitochondrial subgroup constituted 41% of the studied population with a median age of 4 years. No primary pathogenic variants in mitochondrial DNA were detected. Pathogenic or likely pathogenic variants in eight mitochondrial genes were identified in 78% of the mitochondrial cohort. Additionally, seven novel variants were identified. Nonmitochondrial diagnoses accounted for 27% of the study population. In 32% of cases, disease-causing variants were not identified. The current study underscores the diverse phenotypic and genetic landscape of mitochondrial disorders among Egyptian patients.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajmg.a.63881","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial disorders exhibit clinical and genetic diversity. Nearly 400 distinct genes, located in both the mitochondrial and nuclear genomes, harbor pathogenic variants that can produce a broad spectrum of mitochondrial diseases. This work aims to explore the genetic etiology of a cohort of Egyptian pediatric patients who were clinically suspected of having a mitochondrial disorder. A total of 49 patients from 44 unrelated families were studied. Selection criteria included age below 18 years and meeting Morava criteria (a score ≥ 3). The mitochondrial disease criteria (MDC) have been developed to quantify the clinical picture and evaluate the probability of an underlying mitochondrial disorder Exome sequencing, including mitochondrial genome sequencing, was carried out for each participant. Causative variants likely responsible for the phenotypes were identified in 68% of the study population. The mitochondrial subgroup constituted 41% of the studied population with a median age of 4 years. No primary pathogenic variants in mitochondrial DNA were detected. Pathogenic or likely pathogenic variants in eight mitochondrial genes were identified in 78% of the mitochondrial cohort. Additionally, seven novel variants were identified. Nonmitochondrial diagnoses accounted for 27% of the study population. In 32% of cases, disease-causing variants were not identified. The current study underscores the diverse phenotypic and genetic landscape of mitochondrial disorders among Egyptian patients.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.