19F NMR relaxation of buried tryptophan side chains suggest anisotropic rotational diffusion of the protein RfaH.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Md Khushnood Alam, R Aishwarya Bhuvaneshwari, Ishita Sengupta
{"title":"<sup>19</sup>F NMR relaxation of buried tryptophan side chains suggest anisotropic rotational diffusion of the protein RfaH.","authors":"Md Khushnood Alam, R Aishwarya Bhuvaneshwari, Ishita Sengupta","doi":"10.1007/s10858-024-00450-x","DOIUrl":null,"url":null,"abstract":"<p><p>The recent application of <sup>19</sup>F NMR in the study of biomolecular structure and dynamics has made it a potentially attractive probe to complement traditional <sup>15</sup>N/<sup>13</sup>C labelled probes for backbone and sidechain dynamics, albeit with some complications. The utility of <sup>15</sup>N relaxation rates of rigid backbone amide groups to determine the rotational diffusion tensor of proteins is well established. Here we show that the measured <sup>19</sup>F relaxation rates of two buried and possibly immobile <sup>19</sup>F labelled tryptophan sidechains for the multidomain protein RfaH, in its closed conformation, are in reasonable agreement with the calculated values, only when anisotropic rotational diffusion of the protein is considered. While the sparsity of <sup>19</sup>F relaxation data from a limited number of probes precludes the experimental determination of the rotational diffusion tensor here, these results demonstrate the influence of rotational diffusion anisotropy of proteins on <sup>19</sup>F NMR relaxation of rigid tryptophan sidechains, while adding to the expanding literature of <sup>19</sup>F NMR relaxation data sets in biomolecules.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-024-00450-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The recent application of 19F NMR in the study of biomolecular structure and dynamics has made it a potentially attractive probe to complement traditional 15N/13C labelled probes for backbone and sidechain dynamics, albeit with some complications. The utility of 15N relaxation rates of rigid backbone amide groups to determine the rotational diffusion tensor of proteins is well established. Here we show that the measured 19F relaxation rates of two buried and possibly immobile 19F labelled tryptophan sidechains for the multidomain protein RfaH, in its closed conformation, are in reasonable agreement with the calculated values, only when anisotropic rotational diffusion of the protein is considered. While the sparsity of 19F relaxation data from a limited number of probes precludes the experimental determination of the rotational diffusion tensor here, these results demonstrate the influence of rotational diffusion anisotropy of proteins on 19F NMR relaxation of rigid tryptophan sidechains, while adding to the expanding literature of 19F NMR relaxation data sets in biomolecules.

埋藏的色氨酸侧链的 19F NMR 驰豫表明,蛋白质 RfaH 存在各向异性的旋转扩散。
近来,19F NMR 在生物分子结构和动力学研究中的应用使其成为一种具有潜在吸引力的探针,可以补充传统的 15N/13C 标记探针,用于研究骨架和侧链动力学,尽管存在一些复杂性。利用刚性骨架酰胺基团的 15N 松弛率来确定蛋白质的旋转扩散张量已经得到公认。在这里,我们表明,只有在考虑蛋白质各向异性旋转扩散的情况下,多结构域蛋白质 RfaH 在其封闭构象中两条埋藏且可能不动的 19F 标记色氨酸侧链的 19F 松弛率测量值才与计算值合理一致。虽然来自有限探针的 19F 驰豫数据稀少,无法在此对旋转扩散张量进行实验测定,但这些结果证明了蛋白质的旋转扩散各向异性对刚性色氨酸侧链 19F NMR 驰豫的影响,同时也为不断扩展的生物大分子 19F NMR 驰豫数据集文献增添了新的内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信