Md Khushnood Alam, R Aishwarya Bhuvaneshwari, Ishita Sengupta
{"title":"<sup>19</sup>F NMR relaxation of buried tryptophan side chains suggest anisotropic rotational diffusion of the protein RfaH.","authors":"Md Khushnood Alam, R Aishwarya Bhuvaneshwari, Ishita Sengupta","doi":"10.1007/s10858-024-00450-x","DOIUrl":null,"url":null,"abstract":"<p><p>The recent application of <sup>19</sup>F NMR in the study of biomolecular structure and dynamics has made it a potentially attractive probe to complement traditional <sup>15</sup>N/<sup>13</sup>C labelled probes for backbone and sidechain dynamics, albeit with some complications. The utility of <sup>15</sup>N relaxation rates of rigid backbone amide groups to determine the rotational diffusion tensor of proteins is well established. Here we show that the measured <sup>19</sup>F relaxation rates of two buried and possibly immobile <sup>19</sup>F labelled tryptophan sidechains for the multidomain protein RfaH, in its closed conformation, are in reasonable agreement with the calculated values, only when anisotropic rotational diffusion of the protein is considered. While the sparsity of <sup>19</sup>F relaxation data from a limited number of probes precludes the experimental determination of the rotational diffusion tensor here, these results demonstrate the influence of rotational diffusion anisotropy of proteins on <sup>19</sup>F NMR relaxation of rigid tryptophan sidechains, while adding to the expanding literature of <sup>19</sup>F NMR relaxation data sets in biomolecules.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-024-00450-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The recent application of 19F NMR in the study of biomolecular structure and dynamics has made it a potentially attractive probe to complement traditional 15N/13C labelled probes for backbone and sidechain dynamics, albeit with some complications. The utility of 15N relaxation rates of rigid backbone amide groups to determine the rotational diffusion tensor of proteins is well established. Here we show that the measured 19F relaxation rates of two buried and possibly immobile 19F labelled tryptophan sidechains for the multidomain protein RfaH, in its closed conformation, are in reasonable agreement with the calculated values, only when anisotropic rotational diffusion of the protein is considered. While the sparsity of 19F relaxation data from a limited number of probes precludes the experimental determination of the rotational diffusion tensor here, these results demonstrate the influence of rotational diffusion anisotropy of proteins on 19F NMR relaxation of rigid tryptophan sidechains, while adding to the expanding literature of 19F NMR relaxation data sets in biomolecules.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.