{"title":"Heat stress: a major threat to ruminant reproduction and mitigating strategies.","authors":"Mahesh Gupta, Mangesh Vaidya, Sachin Kumar, Gyanendra Singh, Richard Osei-Amponsah, Surinder Singh Chauhan","doi":"10.1007/s00484-024-02805-3","DOIUrl":null,"url":null,"abstract":"<p><p>Stress is an external event or condition that puts pressure on a biological system. Heat stress is defined as the combination of internal and external factors acting on an animal to cause an increase in body temperature and elicit a physiological response. Heat stress is a set of conditions caused by overexposure to or overexertion at excess ambient temperature and leads to the inability of animals to dissipate enough heat to sustain homeostasis. Heat exhaustion, heat stroke, and cramps are among the symptoms. For the majority of mammalian species, including ruminants, heat stress has a negative impact on physiological, reproductive, and nutritional requirements. Reproductive functions, including the male and female reproductive systems, are negatively affected by heat stress. It decreases libido and spermatogenic activity in males and negatively affects follicle development, oogenesis, oocyte maturation, fertilization, implantation, and embryo-fetal development in females. These effects lead to a decrease in the rate of reproduction and financial losses for the livestock industry. Understanding the impact of heat stress on reproductive tissues will aid in the development of strategies for preventing heat stress and improving reproductive functions. Modification of the microenvironment, nutritional control, genetic development of heat-tolerant breeds, hormonal treatment, estrous synchronization, timed artificial insemination, and embryo transfer are among the strategies used to reduce the detrimental effects of heat stress on reproduction. These strategies may also increase the likelihood of establishing pregnancy in farm animals.</p>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00484-024-02805-3","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Stress is an external event or condition that puts pressure on a biological system. Heat stress is defined as the combination of internal and external factors acting on an animal to cause an increase in body temperature and elicit a physiological response. Heat stress is a set of conditions caused by overexposure to or overexertion at excess ambient temperature and leads to the inability of animals to dissipate enough heat to sustain homeostasis. Heat exhaustion, heat stroke, and cramps are among the symptoms. For the majority of mammalian species, including ruminants, heat stress has a negative impact on physiological, reproductive, and nutritional requirements. Reproductive functions, including the male and female reproductive systems, are negatively affected by heat stress. It decreases libido and spermatogenic activity in males and negatively affects follicle development, oogenesis, oocyte maturation, fertilization, implantation, and embryo-fetal development in females. These effects lead to a decrease in the rate of reproduction and financial losses for the livestock industry. Understanding the impact of heat stress on reproductive tissues will aid in the development of strategies for preventing heat stress and improving reproductive functions. Modification of the microenvironment, nutritional control, genetic development of heat-tolerant breeds, hormonal treatment, estrous synchronization, timed artificial insemination, and embryo transfer are among the strategies used to reduce the detrimental effects of heat stress on reproduction. These strategies may also increase the likelihood of establishing pregnancy in farm animals.
期刊介绍:
The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment.
Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health.
The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.