Yoondam Seo, Inseon Kang, Hyeon-Jeong Lee, Jiin Hwang, Soo Heon Kwak, Min-Kyu Oh, Hyunbeom Lee, Hophil Min
{"title":"Simple and robust high-throughput serum proteomics workflow with low-microflow LC-MS/MS.","authors":"Yoondam Seo, Inseon Kang, Hyeon-Jeong Lee, Jiin Hwang, Soo Heon Kwak, Min-Kyu Oh, Hyunbeom Lee, Hophil Min","doi":"10.1007/s00216-024-05603-3","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical proteomics has substantially advanced in identifying and quantifying proteins from biofluids, such as blood, contributing to the discovery of biomarkers. The throughput and reproducibility of serum proteomics for large-scale clinical sample analyses require improvements. High-throughput analysis typically relies on automated equipment, which can be costly and has limited accessibility. In this study, we present a rapid, high-throughput workflow low-microflow LC-MS/MS method without automation. This workflow was optimized to minimize the preparation time and costs by omitting the depletion and desalting steps. The developed method was applied to data-independent acquisition (DIA) analysis of 235 samples, and it consistently yielded approximately 6000 peptides and 600 protein groups, including 33 FDA-approved biomarkers. Our results demonstrate that an 18-min DIA high-throughput workflow, assessed through intermittently collected quality control samples, ensures reproducibility and stability even with 2 µL of serum. It was successfully used to analyze serum samples from patients with diabetes having chronic kidney disease (CKD), and could identify five dysregulated proteins across various CKD stages.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"7007-7018"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05603-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical proteomics has substantially advanced in identifying and quantifying proteins from biofluids, such as blood, contributing to the discovery of biomarkers. The throughput and reproducibility of serum proteomics for large-scale clinical sample analyses require improvements. High-throughput analysis typically relies on automated equipment, which can be costly and has limited accessibility. In this study, we present a rapid, high-throughput workflow low-microflow LC-MS/MS method without automation. This workflow was optimized to minimize the preparation time and costs by omitting the depletion and desalting steps. The developed method was applied to data-independent acquisition (DIA) analysis of 235 samples, and it consistently yielded approximately 6000 peptides and 600 protein groups, including 33 FDA-approved biomarkers. Our results demonstrate that an 18-min DIA high-throughput workflow, assessed through intermittently collected quality control samples, ensures reproducibility and stability even with 2 µL of serum. It was successfully used to analyze serum samples from patients with diabetes having chronic kidney disease (CKD), and could identify five dysregulated proteins across various CKD stages.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.