{"title":"Effect of Osteogenic Metabolic Differentiation of Silver Nanoparticles-based Periodontal Ligament Fibroblasts on Orthodontic Tooth Movement.","authors":"Juan Fu, Kun Meng, Qingmin Yuan","doi":"10.1007/s12013-024-01580-7","DOIUrl":null,"url":null,"abstract":"<p><p>It was to clarify the effects of silver nanoparticles (AgNPs) on biological functions of human periodontal ligament fibroblasts (hPDLFs).</p><p><strong>Methods: </strong>AgNPs were synthesized using a tannic acid reduction method and characterized accordingly. Fifteen Sprague-Dawley rats were randomly assigned to Normal group, Group A (orthodontic tooth movement after alveolar bone defect repair with a blood clot), and Group B (orthodontic tooth movement after alveolar bone defect repair with AgNPs), with five rats in each group. Morphological changes in periodontal tissues were visualized. hPDLFs were treated with 0 μM (Ctrl), 25 μM (L-AgNPs), 50 μM (M-AgNPs), and 100 μM (H-AgNPs) AgNPs to assess cell proliferation via the MTT assay, calcification via alizarin red staining, and osteogenic differentiation and genes/proteins' expression associated with the I3K/Akt signaling pathway through quantitative polymerase chain reaction and Western blot.</p><p><strong>Results: </strong>AgNP diameter was approximately 20 nm. Relative to the normal group, both Group A and Group B exhibited increased widths of the periodontal ligament (PDL) while displaying a decrease in cell counts within the PDL (P < 0.05). Furthermore, the L-AgNPs, M-AgNPs, and H-AgNPs groups exhibited a notable elevation in the number of calcified nodules in hPDLFs, along with elevated alkaline phosphatase, Runx2, osteocalcin, osterix, type I collagen, phosphorylated phosphoinositide 3-kinase, and phosphorylated protein kinase B versus Ctrl (P < 0.05).</p><p><strong>Conclusion: </strong>AgNPs are beneficial in enhancing the biological functions of the PDL, promoting the repair and regeneration of periodontal tissues, indicating their potential clinical value in orthodontic treatments.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01580-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It was to clarify the effects of silver nanoparticles (AgNPs) on biological functions of human periodontal ligament fibroblasts (hPDLFs).
Methods: AgNPs were synthesized using a tannic acid reduction method and characterized accordingly. Fifteen Sprague-Dawley rats were randomly assigned to Normal group, Group A (orthodontic tooth movement after alveolar bone defect repair with a blood clot), and Group B (orthodontic tooth movement after alveolar bone defect repair with AgNPs), with five rats in each group. Morphological changes in periodontal tissues were visualized. hPDLFs were treated with 0 μM (Ctrl), 25 μM (L-AgNPs), 50 μM (M-AgNPs), and 100 μM (H-AgNPs) AgNPs to assess cell proliferation via the MTT assay, calcification via alizarin red staining, and osteogenic differentiation and genes/proteins' expression associated with the I3K/Akt signaling pathway through quantitative polymerase chain reaction and Western blot.
Results: AgNP diameter was approximately 20 nm. Relative to the normal group, both Group A and Group B exhibited increased widths of the periodontal ligament (PDL) while displaying a decrease in cell counts within the PDL (P < 0.05). Furthermore, the L-AgNPs, M-AgNPs, and H-AgNPs groups exhibited a notable elevation in the number of calcified nodules in hPDLFs, along with elevated alkaline phosphatase, Runx2, osteocalcin, osterix, type I collagen, phosphorylated phosphoinositide 3-kinase, and phosphorylated protein kinase B versus Ctrl (P < 0.05).
Conclusion: AgNPs are beneficial in enhancing the biological functions of the PDL, promoting the repair and regeneration of periodontal tissues, indicating their potential clinical value in orthodontic treatments.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.