Cellular solids and prestressed affine networks as models of the elastic behavior of soft biological structures.

IF 3 3区 医学 Q2 BIOPHYSICS
Dimitrije Stamenović
{"title":"Cellular solids and prestressed affine networks as models of the elastic behavior of soft biological structures.","authors":"Dimitrije Stamenović","doi":"10.1007/s10237-024-01894-8","DOIUrl":null,"url":null,"abstract":"<p><p>We reviewed two microstructural models, cellular solid models and prestressed affine network models, that have been used previously in studies of elastic behavior of soft biological materials. These models provide simple and mathematically transparent equations that can be used to interpret experimental data and to obtain quantitative predictions of the elastic properties of biological structures. In both models, volumetric density and elastic properties of the microstructure are key determinants of the macroscopic elastic properties. In the prestressed network model, geometrical rearrangement of the microstructure (kinematic stiffness) is also important. As examples of application of these models, we considered the shear behavior of the cytoskeleton of adherent cells, of the collagen network of articular cartilage, and of the lung parenchymal network since their ability to resist shear is important for their normal biological and physiological functions. All three networks carry a pre-existing stress (prestress). We predicted their shear moduli using the microstructural models and compared those predictions with existing experimental data. Prestressed network models of the cytoskeleton and of the lung parenchyma provided a better correspondence to experimental data than cellular solid models. Both cellular solid and prestressed network models of the cartilage collagen network provided reasonable agreements with experimental values. These findings suggested that the kinematic stiffness and material stiffness of microstructural elements were both important determinants of the shear modulus of the cytoskeleton and of the lung parenchyma, whereas elasticity of collagen fibrils had a predominant role in the cartilage shear behavior.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-024-01894-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We reviewed two microstructural models, cellular solid models and prestressed affine network models, that have been used previously in studies of elastic behavior of soft biological materials. These models provide simple and mathematically transparent equations that can be used to interpret experimental data and to obtain quantitative predictions of the elastic properties of biological structures. In both models, volumetric density and elastic properties of the microstructure are key determinants of the macroscopic elastic properties. In the prestressed network model, geometrical rearrangement of the microstructure (kinematic stiffness) is also important. As examples of application of these models, we considered the shear behavior of the cytoskeleton of adherent cells, of the collagen network of articular cartilage, and of the lung parenchymal network since their ability to resist shear is important for their normal biological and physiological functions. All three networks carry a pre-existing stress (prestress). We predicted their shear moduli using the microstructural models and compared those predictions with existing experimental data. Prestressed network models of the cytoskeleton and of the lung parenchyma provided a better correspondence to experimental data than cellular solid models. Both cellular solid and prestressed network models of the cartilage collagen network provided reasonable agreements with experimental values. These findings suggested that the kinematic stiffness and material stiffness of microstructural elements were both important determinants of the shear modulus of the cytoskeleton and of the lung parenchyma, whereas elasticity of collagen fibrils had a predominant role in the cartilage shear behavior.

作为软生物结构弹性行为模型的细胞固体和预应力仿射网络。
我们回顾了两种微结构模型,即细胞实体模型和预应力仿射网络模型,这两种模型以前曾用于软生物材料弹性行为的研究。这些模型提供了简单且数学上透明的方程,可用于解释实验数据并获得生物结构弹性特性的定量预测。在这两个模型中,微观结构的体积密度和弹性特性是宏观弹性特性的关键决定因素。在预应力网络模型中,微结构的几何重排(运动刚度)也很重要。作为这些模型的应用实例,我们考虑了附着细胞的细胞骨架、关节软骨的胶原蛋白网络和肺实质网络的剪切行为,因为它们的抗剪切能力对其正常的生物和生理功能非常重要。这三种网络都带有预先存在的应力(预应力)。我们使用微结构模型预测了它们的剪切模量,并将这些预测结果与现有的实验数据进行了比较。细胞骨架和肺实质的预应力网络模型比细胞实体模型更符合实验数据。软骨胶原蛋白网络的细胞实体模型和预应力网络模型都与实验值达成了合理的一致。这些发现表明,微结构元素的运动刚度和材料刚度都是细胞骨架和肺实质剪切模量的重要决定因素,而胶原纤维的弹性在软骨剪切行为中起主要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信