A ring resonators optical sensor for multiple biomarkers detection.

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Talanta Pub Date : 2025-01-01 Epub Date: 2024-10-11 DOI:10.1016/j.talanta.2024.127035
Rachele Favaretto, Niccolò Ardoino, Georg Pucker, Nicola Bellotto, Mattia Mancinelli, Gioele Piccoli, Martino Bernard, Lia Vanzetti, Cristina Potrich, Lorenzo Lunelli, Cecilia Pederzolli, Carlo Guardiani, Laura Pasquardini
{"title":"A ring resonators optical sensor for multiple biomarkers detection.","authors":"Rachele Favaretto, Niccolò Ardoino, Georg Pucker, Nicola Bellotto, Mattia Mancinelli, Gioele Piccoli, Martino Bernard, Lia Vanzetti, Cristina Potrich, Lorenzo Lunelli, Cecilia Pederzolli, Carlo Guardiani, Laura Pasquardini","doi":"10.1016/j.talanta.2024.127035","DOIUrl":null,"url":null,"abstract":"<p><p>In the recent years, the number of Point-Of-Care-Tests (POCTs) available for clinical diagnostic has steadily increased. POCTs provide a near-patient testing with the potential to generate a result quickly so that appropriate treatment can be implemented, leading to improved clinical outcomes compared to traditional laboratory testing. Technological advances, such as miniaturization of sensors and improved instrumentation, have revolutionized POCTs, enabling the development of smaller and more accurate devices. In this context, it has also gained increasing importance the screening of various analytes simultaneously to increase specificity and improve the characterization of the disease. This study is aimed at developing and characterizing a photonic integrated circuit for multiple markers detection, which represents the functional core towards a full developed POCT device for clinical pathology applications. The photonic sensor, based on microring resonators (MRRs), is functionalized by immobilizing specific antibodies on a copolymer layer deposited on the MRR's surfaces. Surface chemical techniques were employed to analyse the surface chemical characteristics while fluorescence microscopy was involved to analyse the resulting bioreceptor surface density. The photonic sensor is characterized for the parallel detection of two biomarkers, the C-Reactive Protein (CRP) and the Creatine-Kinase-MB (CK-MB). The analyte-antibody binding curves were obtained both in buffer and in filtered un-diluted artificial saliva showing promising results both in terms of sensitivity, with limit of detection (LOD) of 103 pM for CRP and 140 pM for CK-MB, and in terms of specificity. These encouraging results let the assembly of a highly sensitive POC device for molecular diagnostics.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"282 ","pages":"127035"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the recent years, the number of Point-Of-Care-Tests (POCTs) available for clinical diagnostic has steadily increased. POCTs provide a near-patient testing with the potential to generate a result quickly so that appropriate treatment can be implemented, leading to improved clinical outcomes compared to traditional laboratory testing. Technological advances, such as miniaturization of sensors and improved instrumentation, have revolutionized POCTs, enabling the development of smaller and more accurate devices. In this context, it has also gained increasing importance the screening of various analytes simultaneously to increase specificity and improve the characterization of the disease. This study is aimed at developing and characterizing a photonic integrated circuit for multiple markers detection, which represents the functional core towards a full developed POCT device for clinical pathology applications. The photonic sensor, based on microring resonators (MRRs), is functionalized by immobilizing specific antibodies on a copolymer layer deposited on the MRR's surfaces. Surface chemical techniques were employed to analyse the surface chemical characteristics while fluorescence microscopy was involved to analyse the resulting bioreceptor surface density. The photonic sensor is characterized for the parallel detection of two biomarkers, the C-Reactive Protein (CRP) and the Creatine-Kinase-MB (CK-MB). The analyte-antibody binding curves were obtained both in buffer and in filtered un-diluted artificial saliva showing promising results both in terms of sensitivity, with limit of detection (LOD) of 103 pM for CRP and 140 pM for CK-MB, and in terms of specificity. These encouraging results let the assembly of a highly sensitive POC device for molecular diagnostics.

用于检测多种生物标记物的环形谐振器光学传感器。
近年来,可用于临床诊断的护理点检测(POCT)的数量稳步增加。与传统的实验室检测相比,POCT 可提供就近检测,并能迅速得出结果,以便实施适当的治疗,从而改善临床疗效。传感器的微型化和仪器的改进等技术进步给 POCT 带来了革命性的变化,使更小更精确的设备得以开发。在这种情况下,同时筛查各种分析物以提高特异性和改善疾病特征也变得越来越重要。本研究旨在开发和鉴定一种用于多种标记物检测的光子集成电路,它代表了临床病理学应用中全面开发 POCT 设备的功能核心。该光子传感器基于微孔谐振器(MRR),通过将特定抗体固定在沉积在 MRR 表面的共聚物层上实现功能化。利用表面化学技术分析表面化学特性,同时利用荧光显微镜分析由此产生的生物受体表面密度。光子传感器的特点是可同时检测两种生物标记物:C-反应蛋白(CRP)和肌酸激酶-MB(CK-MB)。在缓冲液和过滤后未稀释的人工唾液中都获得了分析物-抗体结合曲线,显示出良好的灵敏度(CRP 的检测限 (LOD) 为 103 pM,CK-MB 为 140 pM)和特异性。这些令人鼓舞的结果为组装高灵敏度的分子诊断 POC 设备提供了条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信