Jia Wang, Weiqi Zhou, Haoxin Li, Linli Xu, Honghong Wang
{"title":"Cooling benefits from urban planting depend on local background canopy cover: A continental cross-city comparison.","authors":"Jia Wang, Weiqi Zhou, Haoxin Li, Linli Xu, Honghong Wang","doi":"10.1016/j.scitotenv.2024.176864","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous studies have shown that the cooling efficiency (CE) of urban trees varies by cities with different climate backgrounds, and recent research further indicated that there may be large within-city variations in CE. However, how such within-city variations differ across cities, and their relations to the local percent of urban tree canopy (Ptree) remain poorly understood. This study aims to fill this gap based on a comparison study across 118 cities with different biomes and climates in the continental USA. We used the tree canopy layer of the National Land Cover Dataset (NLCD) 2011 to measure urban tree canopy (UTC), and calculated land surface temperature (LST) based on Landsat thermal bands. We found: 1) CE had larger within-city and cross-city spatial variations in cities located in arid and semi-arid biomes. 2) CE was related to Ptree in nonlinear ways in >90 % of the study cities. In most cities (approximately 70 %), CE had an L-shaped relationship with Ptree, showing that CE first declined quickly with the increase of Ptree, but then gradually dropped in a slower way or became relatively stable after Ptree reached a certain threshold. 3) While there was no significant difference in the types of CE-Ptree relationship among biomes and climates, the threshold of Ptree in CE-Ptree nonlinear ways was smaller in arid cities. The results of this threshold linking cooling benefits and current UTC can serve as a useful tool to prioritize locations for urban planting to maximize cooling benefits.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"176864"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.176864","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous studies have shown that the cooling efficiency (CE) of urban trees varies by cities with different climate backgrounds, and recent research further indicated that there may be large within-city variations in CE. However, how such within-city variations differ across cities, and their relations to the local percent of urban tree canopy (Ptree) remain poorly understood. This study aims to fill this gap based on a comparison study across 118 cities with different biomes and climates in the continental USA. We used the tree canopy layer of the National Land Cover Dataset (NLCD) 2011 to measure urban tree canopy (UTC), and calculated land surface temperature (LST) based on Landsat thermal bands. We found: 1) CE had larger within-city and cross-city spatial variations in cities located in arid and semi-arid biomes. 2) CE was related to Ptree in nonlinear ways in >90 % of the study cities. In most cities (approximately 70 %), CE had an L-shaped relationship with Ptree, showing that CE first declined quickly with the increase of Ptree, but then gradually dropped in a slower way or became relatively stable after Ptree reached a certain threshold. 3) While there was no significant difference in the types of CE-Ptree relationship among biomes and climates, the threshold of Ptree in CE-Ptree nonlinear ways was smaller in arid cities. The results of this threshold linking cooling benefits and current UTC can serve as a useful tool to prioritize locations for urban planting to maximize cooling benefits.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.