Blanca Figuerola, David Ruiz-García, Arnau Subías-Baratau, Alberto Maceda-Veiga, Anna Sanchez-Vidal, Claudio Barría
{"title":"Adapting to a pollution hotspot? Catsharks shift to plastic substrates for oviposition.","authors":"Blanca Figuerola, David Ruiz-García, Arnau Subías-Baratau, Alberto Maceda-Veiga, Anna Sanchez-Vidal, Claudio Barría","doi":"10.1016/j.scitotenv.2024.176998","DOIUrl":null,"url":null,"abstract":"<p><p>Plastic pollution is widely recognized as one of the major threats to marine ecosystems. However, our knowledge on the ecological interactions between plastic and marine fauna is still limited. Here, we analyzed the substrate preferences for oviposition in the small-spotted catshark (Scyliorhinus canicula) and explored the influence of pollution, environmental conditions, and fishing pressure as potential drivers. For the first time, we report this catshark species using marine debris for oviposition, unraveling a behavioral shift in the oviposition substrate preferences towards plastics, particularly ghost fishing gear, when biological substrates are unavailable. Our results indicate that this behavioral change may be driven by the combined effects of plastic pollution and habitat degradation. Preferences also change with depth, with a larger preference for the hydrozoan Lytocarpia myriophyllum on the continental shelf, followed by sponges, as in this region mesophotic and deep benthic communities are still more abundant although impacted by human pressures. In contrast, on the continental slope, the preference shifts to tube-dwelling polychaetes and plastics, primarily ghost fishing gear, due to the limited availability of biological substrates in this region. We highlight that plastic-fish interactions may become increasingly recurrent as plastic substrates increase and habitat forming invertebrates decline due to trawl fishing and other anthropogenic activities, especially in the Mediterranean Sea. The implications of this behavior for catshark fitness are still largely unknown, which prompts further research concerning the potential impact on its survival and/or dispersal in the plastic age and highlights the urgency of preserving biogenic habitats.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"176998"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.176998","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plastic pollution is widely recognized as one of the major threats to marine ecosystems. However, our knowledge on the ecological interactions between plastic and marine fauna is still limited. Here, we analyzed the substrate preferences for oviposition in the small-spotted catshark (Scyliorhinus canicula) and explored the influence of pollution, environmental conditions, and fishing pressure as potential drivers. For the first time, we report this catshark species using marine debris for oviposition, unraveling a behavioral shift in the oviposition substrate preferences towards plastics, particularly ghost fishing gear, when biological substrates are unavailable. Our results indicate that this behavioral change may be driven by the combined effects of plastic pollution and habitat degradation. Preferences also change with depth, with a larger preference for the hydrozoan Lytocarpia myriophyllum on the continental shelf, followed by sponges, as in this region mesophotic and deep benthic communities are still more abundant although impacted by human pressures. In contrast, on the continental slope, the preference shifts to tube-dwelling polychaetes and plastics, primarily ghost fishing gear, due to the limited availability of biological substrates in this region. We highlight that plastic-fish interactions may become increasingly recurrent as plastic substrates increase and habitat forming invertebrates decline due to trawl fishing and other anthropogenic activities, especially in the Mediterranean Sea. The implications of this behavior for catshark fitness are still largely unknown, which prompts further research concerning the potential impact on its survival and/or dispersal in the plastic age and highlights the urgency of preserving biogenic habitats.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.