Jiacheng Zhou, Mingmei Ji, Yuwei Yang, Wenhua Su, Liwen Chen, Yuzhe Liu, Yiyan Fei, Jiong Ma, Lan Mi
{"title":"Two-photon photodynamic therapy with curcumin nanocomposite.","authors":"Jiacheng Zhou, Mingmei Ji, Yuwei Yang, Wenhua Su, Liwen Chen, Yuzhe Liu, Yiyan Fei, Jiong Ma, Lan Mi","doi":"10.1016/j.colsurfb.2024.114306","DOIUrl":null,"url":null,"abstract":"<p><p>Two-photon photodynamic therapy (TP-PDT) offers an innovative approach to cancer treatment that utilizes near-infrared light to activate photosensitizers and generate reactive oxygen species (ROS) for targeted cancer cell elimination. TiO<sub>2</sub>-CUR-Sofast (TCS), which uses TiO<sub>2</sub> nanoparticles and Sofast cationic polymer to modify curcumin (CUR), has demonstrated potential as a photosensitizer under visible light irradiation, addressing the limitations of CUR's narrow spectral range and low bioavailability. This study explores the utility of the two-photon technique to activate TCS within the infrared spectrum, aiming to enhance ROS production and penetration depth compared to traditional CUR. TCS exhibits a significantly higher ROS production at 900 nm excitation wavelength, approximately 6-7 times that of CUR, signifying a substantial increase in efficiency. In TP-PDT, TCS showed significant phototoxicity against HeLa and T24 cell lines compared to CUR. Furthermore, TCS's photodynamic efficacy is further confirmed by cell apoptosis and necrosis studies, where approximately 89 % of cells treated with TCS under 900 nm light irradiation were observed in an apoptosis/necrosis state. And the TP-PDT effect in deep tissue was simulated using pig skin. It shows that the two-photon excitation has a significant penetration depth advantage over the single-photon excitation. These results indicate that the two-photon PDT scheme of TCS has greater potential than the single-photon PDT scheme in the treatment of cancer, and provides an experimental foundation for the effective treatment of deep lesions.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114306"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114306","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Two-photon photodynamic therapy (TP-PDT) offers an innovative approach to cancer treatment that utilizes near-infrared light to activate photosensitizers and generate reactive oxygen species (ROS) for targeted cancer cell elimination. TiO2-CUR-Sofast (TCS), which uses TiO2 nanoparticles and Sofast cationic polymer to modify curcumin (CUR), has demonstrated potential as a photosensitizer under visible light irradiation, addressing the limitations of CUR's narrow spectral range and low bioavailability. This study explores the utility of the two-photon technique to activate TCS within the infrared spectrum, aiming to enhance ROS production and penetration depth compared to traditional CUR. TCS exhibits a significantly higher ROS production at 900 nm excitation wavelength, approximately 6-7 times that of CUR, signifying a substantial increase in efficiency. In TP-PDT, TCS showed significant phototoxicity against HeLa and T24 cell lines compared to CUR. Furthermore, TCS's photodynamic efficacy is further confirmed by cell apoptosis and necrosis studies, where approximately 89 % of cells treated with TCS under 900 nm light irradiation were observed in an apoptosis/necrosis state. And the TP-PDT effect in deep tissue was simulated using pig skin. It shows that the two-photon excitation has a significant penetration depth advantage over the single-photon excitation. These results indicate that the two-photon PDT scheme of TCS has greater potential than the single-photon PDT scheme in the treatment of cancer, and provides an experimental foundation for the effective treatment of deep lesions.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.