{"title":"Multienzyme-like active MnO<sub>2</sub> nanozyme with ROS scavenging for inflammatory injury therapy induced by avian flavivirus through antiviral function.","authors":"Linhua Xu, Wei Fan, Ming Han, Wei Li, Yu He, Zhen Wu, Aimin Wu, Yue Xie, Huaiyong Gao, Shun Chen, Xianxiang Wang","doi":"10.1016/j.colsurfb.2024.114302","DOIUrl":null,"url":null,"abstract":"<p><p>Duck Tembusu virus (DTMUV) is an acute avian flavivirus that primarily infects poultry, mosquitoes, and some mammals including humans. The viral infection triggers reactive oxygen species (ROS) and inflammatory response that are crucial in mediating injury. Crafting multifunctional nanozymes that possess both ROS scavenging and anti-inflammatory activities presents formidable challenges. The study synthesized manganese dioxide cauliflowers (MnO<sub>2</sub> Cfs) endowed with multiple enzyme-like activities (analogous to SOD, CAT, and GPX) that effectively alleviated the injury induced by DTMUV both in vitro and in vivo. Remarkably, MnO<sub>2</sub> Cfs efficiently neutralized various ROS, encompassing hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), superoxide anion (O<sub>2</sub><sup>·-</sup>) and hydroxyl radical (·OH). Our in vitro assessments showed that MnO<sub>2</sub> Cfs could alleviate cytopathic effects and modulate the innate immune response during DTMUV infection through their ROS scavenging and anti-inflammatory properties. In vivo experiments supported these findings, demonstrating that ducklings therapied by MnO<sub>2</sub> Cfs experienced alleviated injury during DTMUV infection. Importantly, MnO<sub>2</sub> Cfs also effectively inhibited DTMUV replication in both laboratory and field conditions. This study presents a novel strategy for nanozyme design, promising significant therapeutic potential for treating viral inflammatory diseases.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114302"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114302","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Duck Tembusu virus (DTMUV) is an acute avian flavivirus that primarily infects poultry, mosquitoes, and some mammals including humans. The viral infection triggers reactive oxygen species (ROS) and inflammatory response that are crucial in mediating injury. Crafting multifunctional nanozymes that possess both ROS scavenging and anti-inflammatory activities presents formidable challenges. The study synthesized manganese dioxide cauliflowers (MnO2 Cfs) endowed with multiple enzyme-like activities (analogous to SOD, CAT, and GPX) that effectively alleviated the injury induced by DTMUV both in vitro and in vivo. Remarkably, MnO2 Cfs efficiently neutralized various ROS, encompassing hydrogen peroxide (H2O2), superoxide anion (O2·-) and hydroxyl radical (·OH). Our in vitro assessments showed that MnO2 Cfs could alleviate cytopathic effects and modulate the innate immune response during DTMUV infection through their ROS scavenging and anti-inflammatory properties. In vivo experiments supported these findings, demonstrating that ducklings therapied by MnO2 Cfs experienced alleviated injury during DTMUV infection. Importantly, MnO2 Cfs also effectively inhibited DTMUV replication in both laboratory and field conditions. This study presents a novel strategy for nanozyme design, promising significant therapeutic potential for treating viral inflammatory diseases.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.