Han Sol Kim, Kyungmin Ahn, Byeol Yi Han, Al-Monsur Jiaul Haque, Sujin Kim, Seungkeun Kim, Youngho Wee, Jungbae Kim
{"title":"Conductive single enzyme nanocomposites prepared by in-situ growth of nanoscale polyaniline for high performance enzymatic bioelectrode.","authors":"Han Sol Kim, Kyungmin Ahn, Byeol Yi Han, Al-Monsur Jiaul Haque, Sujin Kim, Seungkeun Kim, Youngho Wee, Jungbae Kim","doi":"10.1016/j.bios.2024.116841","DOIUrl":null,"url":null,"abstract":"<p><p>Enzyme-based electrochemical biosensors hold great promise for applications in health/disease monitoring, drug discovery, and environmental monitoring. However, inherently non-conductive nature of proteinaceous enzymes often hampers effective electron transfer at enzyme-electrode interface, limiting biosensor performance of enzyme bioelectrodes. To address this problem, we present an approach to synthesize polyaniline (PAN)-based conductive single enzyme nanocomposites of glucose oxidase (GOx) (denoted as PAN-GOx). To prevent multimerization of enzymes during nanocomposite synthesis and enable single enzyme wrapping, we activate GOx surface with phenylamine groups based on the programmed diffusion of reactants in the reaction solution. Subsequent in-situ polymerization enables the synthesis of nanoscale conductive PAN layer (∼2.7 nm thickness) grafted from individual GOx molecule. PAN-GOx retains 83% and 74% of its specific activity and catalytic efficiency, respectively, compared to free GOx, while demonstrating a ∼500% improved conductivity. Furthermore, PAN-GOx-based glucose biosensors show an approximately 16- and 3-fold higher sensitivity compared to biosensors prepared by using free GOx and a mixture of PAN and GOx, respectively. This study provides a facile method to fabricate conductive single enzyme nanocomposites with enhanced electron transfer, which can potentially be further modified and/or compounded with conductive materials for demonstrating high performance enzymatic bioelectrodes.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.bios.2024.116841","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Enzyme-based electrochemical biosensors hold great promise for applications in health/disease monitoring, drug discovery, and environmental monitoring. However, inherently non-conductive nature of proteinaceous enzymes often hampers effective electron transfer at enzyme-electrode interface, limiting biosensor performance of enzyme bioelectrodes. To address this problem, we present an approach to synthesize polyaniline (PAN)-based conductive single enzyme nanocomposites of glucose oxidase (GOx) (denoted as PAN-GOx). To prevent multimerization of enzymes during nanocomposite synthesis and enable single enzyme wrapping, we activate GOx surface with phenylamine groups based on the programmed diffusion of reactants in the reaction solution. Subsequent in-situ polymerization enables the synthesis of nanoscale conductive PAN layer (∼2.7 nm thickness) grafted from individual GOx molecule. PAN-GOx retains 83% and 74% of its specific activity and catalytic efficiency, respectively, compared to free GOx, while demonstrating a ∼500% improved conductivity. Furthermore, PAN-GOx-based glucose biosensors show an approximately 16- and 3-fold higher sensitivity compared to biosensors prepared by using free GOx and a mixture of PAN and GOx, respectively. This study provides a facile method to fabricate conductive single enzyme nanocomposites with enhanced electron transfer, which can potentially be further modified and/or compounded with conductive materials for demonstrating high performance enzymatic bioelectrodes.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.