Competitive control of CsNCED1-1 by CsLOB1 and CsbZIP40 triggers susceptibility to citrus canker.

IF 6.2 1区 生物学 Q1 PLANT SCIENCES
Qin Long, Lehuan Zhang, Tianxiang Zhu, Shuyang Zhao, Changyu Zou, Lanzhen Xu, Yongrui He, Shanchun Chen, Xiuping Zou
{"title":"Competitive control of CsNCED1-1 by CsLOB1 and CsbZIP40 triggers susceptibility to citrus canker.","authors":"Qin Long, Lehuan Zhang, Tianxiang Zhu, Shuyang Zhao, Changyu Zou, Lanzhen Xu, Yongrui He, Shanchun Chen, Xiuping Zou","doi":"10.1111/tpj.17075","DOIUrl":null,"url":null,"abstract":"<p><p>Pustule formation is pivotal for the development of the Xanthomonas citri subsp. citri (Xcc)-induced citrus canker disease (CCD). Although our previous study demonstrated that the exogenous application of abscisic acid (ABA) facilitated pustule formation induced by Xcc, the precise mechanism remains elusive. The 9-cis-epoxycarotenoid dioxygenase (NCED) is a crucial enzyme in ABA biosynthesis. This study explored the role of citrus CsNCED1-1 in CCD resistance through overexpression and RNA interference of CsNCED1-1 in Wanjincheng orange (Citrus sinensis). Our findings indicated that CsNCED1-1 negatively modulated CCD resistance by fostering ABA accumulation, concomitant with an increase in jasmonic acid (JA) and a decrease in salicylic acid (SA). Plants overexpressing CsNCED1-1 displayed shortened leaves with smaller and denser stomata along with irregular and increased palisade cells. CsLOB1 is a known susceptibility gene for CCD, and CsbZIP40 positively influences resistance to this disease. We further confirmed that CsLOB1 promoted and CsbZIP40 suppressed the transcription of CsNCED1-1 by directly binding to the CsNCED1-1 promoter. Notably, CsbZIP40 and CsLOB1 showed a competitive relationship in the regulation of CsNCED1-1 expression, with CsbZIP40 exhibiting greater competitiveness. Overall, our findings highlight that CsNCED1-1 promotes susceptibility to citrus canker by disrupting JA- and SA-mediated defense mechanisms and triggering the proliferation and remodeling of palisade cells, thereby facilitating pathogen colonization and pustule formation. This study offers novel insights into the regulatory mechanisms underlying citrus canker resistance and the role of CsNCED1-1 in citrus.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17075","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pustule formation is pivotal for the development of the Xanthomonas citri subsp. citri (Xcc)-induced citrus canker disease (CCD). Although our previous study demonstrated that the exogenous application of abscisic acid (ABA) facilitated pustule formation induced by Xcc, the precise mechanism remains elusive. The 9-cis-epoxycarotenoid dioxygenase (NCED) is a crucial enzyme in ABA biosynthesis. This study explored the role of citrus CsNCED1-1 in CCD resistance through overexpression and RNA interference of CsNCED1-1 in Wanjincheng orange (Citrus sinensis). Our findings indicated that CsNCED1-1 negatively modulated CCD resistance by fostering ABA accumulation, concomitant with an increase in jasmonic acid (JA) and a decrease in salicylic acid (SA). Plants overexpressing CsNCED1-1 displayed shortened leaves with smaller and denser stomata along with irregular and increased palisade cells. CsLOB1 is a known susceptibility gene for CCD, and CsbZIP40 positively influences resistance to this disease. We further confirmed that CsLOB1 promoted and CsbZIP40 suppressed the transcription of CsNCED1-1 by directly binding to the CsNCED1-1 promoter. Notably, CsbZIP40 and CsLOB1 showed a competitive relationship in the regulation of CsNCED1-1 expression, with CsbZIP40 exhibiting greater competitiveness. Overall, our findings highlight that CsNCED1-1 promotes susceptibility to citrus canker by disrupting JA- and SA-mediated defense mechanisms and triggering the proliferation and remodeling of palisade cells, thereby facilitating pathogen colonization and pustule formation. This study offers novel insights into the regulatory mechanisms underlying citrus canker resistance and the role of CsNCED1-1 in citrus.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信