{"title":"Decrypting Corals: Does Regulatory Evolution Underlie Environmental Specialisation of Coral Cryptic Lineages?","authors":"Dominique N Gallery, John P Rippe, Mikhail V Matz","doi":"10.1111/mec.17546","DOIUrl":null,"url":null,"abstract":"<p><p>A recent sequencing study has shown that two common Caribbean corals, Montastraea cavernosa and Siderastrea siderea, each consist of four genetically distinct lineages in the Florida Keys. These lineages are specialised to a certain depth and, to a lesser extent, to nearshore or offshore habitats. We hypothesised that the lineages' environmental specialisation is at least in part due to regulatory evolution, which would manifest as the emergence of groups of coregulated genes ('modules') demonstrating lineage-specific responses to different reef environments. Our hypothesis also predicted that genes belonging to such modules would show greater genetic divergence between lineages than other genes. Contrary to these expectations, responses of cryptic lineages to natural environmental variation were essentially the same at the genome-wide gene coexpression network level, with much fewer differences in gene expression between lineages compared to between habitats. Moreover, none of the identified coregulated gene expression modules exhibit elevated genetic divergence between lineages. Possible explanations of these unexpected results range from the leading role of algal symbionts and/or microbiome in adaptation to strong action of spatially varying selection equalising gene expression patterns despite different genetic background. We discuss how future studies could assist in discriminating between these possibilities.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17546"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17546","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A recent sequencing study has shown that two common Caribbean corals, Montastraea cavernosa and Siderastrea siderea, each consist of four genetically distinct lineages in the Florida Keys. These lineages are specialised to a certain depth and, to a lesser extent, to nearshore or offshore habitats. We hypothesised that the lineages' environmental specialisation is at least in part due to regulatory evolution, which would manifest as the emergence of groups of coregulated genes ('modules') demonstrating lineage-specific responses to different reef environments. Our hypothesis also predicted that genes belonging to such modules would show greater genetic divergence between lineages than other genes. Contrary to these expectations, responses of cryptic lineages to natural environmental variation were essentially the same at the genome-wide gene coexpression network level, with much fewer differences in gene expression between lineages compared to between habitats. Moreover, none of the identified coregulated gene expression modules exhibit elevated genetic divergence between lineages. Possible explanations of these unexpected results range from the leading role of algal symbionts and/or microbiome in adaptation to strong action of spatially varying selection equalising gene expression patterns despite different genetic background. We discuss how future studies could assist in discriminating between these possibilities.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms