Optimizing Aqueous Zinc-Sulfur Battery Performance via Regulating Acetonitrile Co-Solvents and Carbon Nanotube Carriers.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-10-21 DOI:10.1002/cssc.202401429
Zhenqiang Ge, Hangning Liu, Shan Wang, Yingjun Ma, Wenhao Xu, Linghao Su, Lei Han, Liangyu Gong, Jie Wang
{"title":"Optimizing Aqueous Zinc-Sulfur Battery Performance via Regulating Acetonitrile Co-Solvents and Carbon Nanotube Carriers.","authors":"Zhenqiang Ge, Hangning Liu, Shan Wang, Yingjun Ma, Wenhao Xu, Linghao Su, Lei Han, Liangyu Gong, Jie Wang","doi":"10.1002/cssc.202401429","DOIUrl":null,"url":null,"abstract":"<p><p>Rechargeable aqueous zinc-sulfur batteries (AZSBs) are gaining attention due to their high energy density, ultra-stable discharge platform, and safety. However, poor liquid/solid reaction processes at the anode and cathode reduce reaction kinetics, and the severe dissolution of polysulfides causes shuttle effects during discharge/charge cycles, hindering practical applications. Improving performance requires optimizing both the cathode and electrolyte. Herein, we design an organic-inorganic hybrid electrolyte (zinc trifluoromethanesulfonate and trace iodine monomer dissolved in an acetonitrile/water co-solvent (AN-X)) and a partially exfoliated multi-walled carbon nanotube (PECNT) hosted sulfur (S@PECNTs) cathode for AZSBs. The sulfur is highly dispersed along the PECNTs with appropriate wettability at the electrode/electrolyte interface using AN-3 as the electrolyte. Meanwhile, this electrolyte inhibits hydrogen evolution at negative potentials and promotes uniform Zn ion stripping/plating. Expressively, the AN-3-based AZSB exhibits a high discharge capacity of 1370 mAh g<sup>-1</sup> with excellent Coulombic efficiency (79.9 %), outstanding rate capability, and cycling performance. These improvements are attributed to the synergistic effect between the S@PECNTs and the AN-3 electrolyte, which reduces R<sub>ct</sub> to enhance reaction kinetics and blocks the dissolution and shuttle effect of polysulfides, ensuring a reversible reaction between zinc and sulfur.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401429"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401429","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable aqueous zinc-sulfur batteries (AZSBs) are gaining attention due to their high energy density, ultra-stable discharge platform, and safety. However, poor liquid/solid reaction processes at the anode and cathode reduce reaction kinetics, and the severe dissolution of polysulfides causes shuttle effects during discharge/charge cycles, hindering practical applications. Improving performance requires optimizing both the cathode and electrolyte. Herein, we design an organic-inorganic hybrid electrolyte (zinc trifluoromethanesulfonate and trace iodine monomer dissolved in an acetonitrile/water co-solvent (AN-X)) and a partially exfoliated multi-walled carbon nanotube (PECNT) hosted sulfur (S@PECNTs) cathode for AZSBs. The sulfur is highly dispersed along the PECNTs with appropriate wettability at the electrode/electrolyte interface using AN-3 as the electrolyte. Meanwhile, this electrolyte inhibits hydrogen evolution at negative potentials and promotes uniform Zn ion stripping/plating. Expressively, the AN-3-based AZSB exhibits a high discharge capacity of 1370 mAh g-1 with excellent Coulombic efficiency (79.9 %), outstanding rate capability, and cycling performance. These improvements are attributed to the synergistic effect between the S@PECNTs and the AN-3 electrolyte, which reduces Rct to enhance reaction kinetics and blocks the dissolution and shuttle effect of polysulfides, ensuring a reversible reaction between zinc and sulfur.

通过调节乙腈共溶剂和碳纳米管载体优化锌硫水溶液电池性能。
可充电锌硫水溶液电池(AZSB)因其高能量密度、超稳定放电平台和安全性而备受关注。然而,阳极和阴极的液/固反应过程不佳会降低反应动力学,多硫化物的严重溶解会在放电/充电循环过程中造成穿梭效应,从而阻碍实际应用。要提高性能,就必须优化阴极和电解液。在此,我们为 AZSBs 设计了一种有机-无机混合电解质(溶解在乙腈/水助溶剂 (AN-X) 中的三氟甲磺酸锌和微量碘单体)和一种部分剥离的多壁碳纳米管(PECNT)载硫(S@PECNTs)阴极。使用 AN-3 作为电解质,硫沿着 PECNTs 高度分散,在电极/电解质界面具有适当的润湿性。同时,这种电解质可抑制负电位下的氢演化,并促进锌离子的均匀剥离/电镀。显然,基于 AN-3 的 AZSB 具有 1370 mAh g-1 的高放电容量、出色的库仑效率(79.9%)、出色的速率能力和循环性能。这些改进归功于 S@PECNTs 和 AN-3 电解质之间的协同效应,S@PECNTs 可降低 Rct 以增强反应动力学,阻断多硫化物的溶解和穿梭效应,确保锌和硫之间的可逆反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信