Priyanka Sahu, Sourav Chakraborty, A A Isab, Santi M Mandal, Joydev Dinda
{"title":"Biofilm Demolition by [Au<sup>III</sup>(N N)Cl(NHC)][PF<sub>6</sub>]<sub>2</sub> Complexes Fastened with Bipyridine and Phenanthroline Ligands; Potent Antibacterial Agents Targeting Membrane Lipid.","authors":"Priyanka Sahu, Sourav Chakraborty, A A Isab, Santi M Mandal, Joydev Dinda","doi":"10.1002/cplu.202400543","DOIUrl":null,"url":null,"abstract":"<p><p>The development of new antibacterial drugs is essential for staying ahead of evolving antibiotic resistant bacterial (ARB) threats, ensuring effective treatment options for bacterial infections, and protecting public health. Herein, we successfully designed and synthesized two novel gold(III)- NHC complexes, [Au(1)(bpy)Cl][PF<sub>6</sub>]<sub>2</sub> (2) and [Au(1)(phen)Cl][PF<sub>6</sub>]<sub>2</sub> (3) based on the proligand pyridyl[1,2-a]{2-pyridylimidazol}-3-ylidene hexafluorophosphate (1⋅HPF<sub>6</sub>) [bpy=2,2'-bipyridine; phen=1,10-phenanthroline]. The synthesized complexes were characterized spectroscopically; their geometries and structural arrangements were confirmed by single crystal XRD analysis. Complexes 2 and 3 showed photoluminescence properties at room temperature and the time-resolved fluorescence decay confirmed the fluorescence lifetimes of 0.54 and 0.62 ns respectively; which were used to demonstrate their direct interaction with bacterial cells. Among the two complexes, complex 3 was found to be more potent against the bacterial strains (Staphylococcus aureus, Gram-positive and Pseudomonas aeruginosa, Gram-negative bacteria) with the MIC values of 8.91 μM and 17.82 μM respectively. Studies revealed the binding of the complexes with the fundamental phospholipids present in the cell membrane of bacteria, which was found to be the leading cause of bacterial cell death. Cytotoxicity was evaluated using an MTT assay on 293 T cell lines; emphasizing the potential therapeutic uses of the Au(III)-NHC complexes to control bacterial infections.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400543"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400543","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of new antibacterial drugs is essential for staying ahead of evolving antibiotic resistant bacterial (ARB) threats, ensuring effective treatment options for bacterial infections, and protecting public health. Herein, we successfully designed and synthesized two novel gold(III)- NHC complexes, [Au(1)(bpy)Cl][PF6]2 (2) and [Au(1)(phen)Cl][PF6]2 (3) based on the proligand pyridyl[1,2-a]{2-pyridylimidazol}-3-ylidene hexafluorophosphate (1⋅HPF6) [bpy=2,2'-bipyridine; phen=1,10-phenanthroline]. The synthesized complexes were characterized spectroscopically; their geometries and structural arrangements were confirmed by single crystal XRD analysis. Complexes 2 and 3 showed photoluminescence properties at room temperature and the time-resolved fluorescence decay confirmed the fluorescence lifetimes of 0.54 and 0.62 ns respectively; which were used to demonstrate their direct interaction with bacterial cells. Among the two complexes, complex 3 was found to be more potent against the bacterial strains (Staphylococcus aureus, Gram-positive and Pseudomonas aeruginosa, Gram-negative bacteria) with the MIC values of 8.91 μM and 17.82 μM respectively. Studies revealed the binding of the complexes with the fundamental phospholipids present in the cell membrane of bacteria, which was found to be the leading cause of bacterial cell death. Cytotoxicity was evaluated using an MTT assay on 293 T cell lines; emphasizing the potential therapeutic uses of the Au(III)-NHC complexes to control bacterial infections.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.