{"title":"The translation initiation factor eIF2α regulates lipid homeostasis and metabolic aging","authors":"Haipeng Huang, Yilie Liao, Ning Li, Xingfan Qu, Chaocan Li, Jiaqi Hou","doi":"10.1111/acel.14348","DOIUrl":null,"url":null,"abstract":"<p>Aging is usually accompanied by excessive body fat gain, leading to increased susceptibility to comorbidities. This study aimed to explore an unexpected function for the eukaryotic initiation factor-2α (eIF2α) during aging. Reducing the eIF2α dose led to a reconfiguration of the metabolic equilibrium, promoting catabolism, facilitating lipolysis, and decreasing body fat accumulation while maintaining healthy glucose and lipid metabolism during aging. Specifically, eIF2α enhanced the expression of distinct messenger RNAs encoding mitochondrial electron transport chain proteins at the translation level. The mitochondrial respiration increased in eIF2α heterozygotes, even during aging. Deceleration of translation was demonstrated as a conserved mechanism for promoting longevity across various species. Our findings demonstrated that the restriction of translation by reducing eIF2α expression could fend off multiple tissue damage and improve metabolic homeostasis during aging. Hence, eIF2α was a crucial target for benefiting mammalian aging achieving delayed mammalian aging.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709108/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14348","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Aging is usually accompanied by excessive body fat gain, leading to increased susceptibility to comorbidities. This study aimed to explore an unexpected function for the eukaryotic initiation factor-2α (eIF2α) during aging. Reducing the eIF2α dose led to a reconfiguration of the metabolic equilibrium, promoting catabolism, facilitating lipolysis, and decreasing body fat accumulation while maintaining healthy glucose and lipid metabolism during aging. Specifically, eIF2α enhanced the expression of distinct messenger RNAs encoding mitochondrial electron transport chain proteins at the translation level. The mitochondrial respiration increased in eIF2α heterozygotes, even during aging. Deceleration of translation was demonstrated as a conserved mechanism for promoting longevity across various species. Our findings demonstrated that the restriction of translation by reducing eIF2α expression could fend off multiple tissue damage and improve metabolic homeostasis during aging. Hence, eIF2α was a crucial target for benefiting mammalian aging achieving delayed mammalian aging.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.