Pickering emulsions for stimuli-responsive transdermal drug delivery: effect of rheology and microstructure on performance†

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2024-10-15 DOI:10.1039/D4SM00993B
Simona Migliozzi, Yiting He, Maryam Parhizkar, Yang Lan and Panagiota Angeli
{"title":"Pickering emulsions for stimuli-responsive transdermal drug delivery: effect of rheology and microstructure on performance†","authors":"Simona Migliozzi, Yiting He, Maryam Parhizkar, Yang Lan and Panagiota Angeli","doi":"10.1039/D4SM00993B","DOIUrl":null,"url":null,"abstract":"<p >This work investigates the design of stimuli-responsive Pickering emulsions (PEs) for transdermal drug delivery applications, by exploring the impact of stabilising microgels size and interactions on their rheological and release properties. Temperature-responsive poly(<em>N</em>-isopropylacrylamide) microgels modified with 1-benzyl-3-vinylimidazolium bromide (pNIPAM-<em>co</em>-BVI) are synthesized in varying sizes and used to stabilise jojoba oil-in-water concentrated emulsions. The results reveals two distinct behaviours: for small microgels (∼300 nm), the PEs exhibit a smooth, uniform structure characterised by a mild yield stress, characteristic of soft glassy systems. Conversely, larger microgels (∼800 nm) induce droplet clustering, resulting in increased elasticity and a more complex yielding process. Interestingly, transdermal delivery tests demonstrate that microstructure, rather than bulk rheology, governs sustained drug release. The release process can be modelled as diffusion-controlled transport through a porous medium with random traps. At room temperature, the trap size corresponds to the droplet size, and the release time scales with the total dispersed phases volume fraction. However, at physiological temperature (37 °C), above the volume-phase transition temperature of the microgels, the release time increases significantly. The trap size approaches the microgel size, suggesting that microgel porosity becomes the dominant factor controlling drug release. Overall, the results highlight the critical role of microstructure design in optimising stimuli-responsive PEs for controlled transdermal drug delivery.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 43","pages":" 8621-8637"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm00993b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00993b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the design of stimuli-responsive Pickering emulsions (PEs) for transdermal drug delivery applications, by exploring the impact of stabilising microgels size and interactions on their rheological and release properties. Temperature-responsive poly(N-isopropylacrylamide) microgels modified with 1-benzyl-3-vinylimidazolium bromide (pNIPAM-co-BVI) are synthesized in varying sizes and used to stabilise jojoba oil-in-water concentrated emulsions. The results reveals two distinct behaviours: for small microgels (∼300 nm), the PEs exhibit a smooth, uniform structure characterised by a mild yield stress, characteristic of soft glassy systems. Conversely, larger microgels (∼800 nm) induce droplet clustering, resulting in increased elasticity and a more complex yielding process. Interestingly, transdermal delivery tests demonstrate that microstructure, rather than bulk rheology, governs sustained drug release. The release process can be modelled as diffusion-controlled transport through a porous medium with random traps. At room temperature, the trap size corresponds to the droplet size, and the release time scales with the total dispersed phases volume fraction. However, at physiological temperature (37 °C), above the volume-phase transition temperature of the microgels, the release time increases significantly. The trap size approaches the microgel size, suggesting that microgel porosity becomes the dominant factor controlling drug release. Overall, the results highlight the critical role of microstructure design in optimising stimuli-responsive PEs for controlled transdermal drug delivery.

Abstract Image

用于刺激响应透皮给药的皮克林乳剂:流变学和微结构对性能的影响。
本研究通过探讨稳定微凝胶的尺寸和相互作用对其流变和释放特性的影响,研究了刺激响应型皮克林乳液(PE)的设计,以用于透皮给药应用。用 1-苄基-3-乙烯基溴化咪唑(pNIPAM-co-BVI)修饰的温度响应型聚(N-异丙基丙烯酰胺)微凝胶被合成为不同大小,并被用于稳定水包荷荷巴油浓缩乳剂。研究结果显示了两种截然不同的行为:对于较小的微凝胶(300 纳米以下),聚乙烯呈现出光滑、均匀的结构,屈服应力较小,这是软玻璃体系的特征。相反,较大的微凝胶(800 纳米以下)会引起液滴聚集,导致弹性增加,屈服过程更加复杂。有趣的是,透皮给药测试表明,微结构而非体积流变学决定了药物的持续释放。释放过程可模拟为通过具有随机陷阱的多孔介质的扩散控制传输。室温下,阱的大小与液滴的大小相对应,释放时间与分散相的总体积分数成比例。然而,在生理温度(37 °C)下,即在微凝胶的体积-相变温度之上,释放时间显著增加。捕获物的大小接近微凝胶的大小,这表明微凝胶的孔隙率成为控制药物释放的主要因素。总之,研究结果凸显了微结构设计在优化刺激响应型聚乙烯以实现可控透皮给药方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Where physics meets chemistry meets biology for fundamental soft matter research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信