Development of a coarse-grained molecular dynamics model for poly(dimethyl-co-diphenyl)siloxane†

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2024-10-07 DOI:10.1039/D4SM00875H
Weikang Xian, Amitesh Maiti, Andrew P. Saab and Ying Li
{"title":"Development of a coarse-grained molecular dynamics model for poly(dimethyl-co-diphenyl)siloxane†","authors":"Weikang Xian, Amitesh Maiti, Andrew P. Saab and Ying Li","doi":"10.1039/D4SM00875H","DOIUrl":null,"url":null,"abstract":"<p >Polydimethylsiloxane is an important polymeric material with a wide range of applications. However, environmental effects like low temperature can induce crystallization in this material with resulting changes in its structural and dynamic properties. The incorporation of phenyl-siloxane components, <em>e.g.</em>, as in a poly(dimethyl-<em>co</em>-diphenyl)siloxane random copolymer, is known to suppress such crystallization. Molecular dynamics (MD) simulations can be a powerful tool to understand such effects in atomistic detail. Unfortunately, all-atomistic molecular dynamics (AAMD) is limited in both spatial dimensions and simulation times it can probe. To overcome such constraints and to extend to more useful length- and time-scales, we systematically develop a coarse-grained molecular dynamics (CGMD) model for the poly(dimethyl-<em>co</em>-diphenyl)siloxane system with bonded and non-bonded interactions determined from all-atomistic simulations by the iterative Boltzmann inversion (IBI) method. Additionally, we propose a lever rule that can be useful to generate non-bonded potentials for such systems without reference to the all-atomistic ground truth. Our model captures the structural and dynamic properties of the copolymer material with quantitative accuracy and is useful to study long-time dynamics of highly-entangled systems, sequence-dependent properties, phase behaviour, <em>etc.</em></p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 42","pages":" 8480-8492"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00875h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polydimethylsiloxane is an important polymeric material with a wide range of applications. However, environmental effects like low temperature can induce crystallization in this material with resulting changes in its structural and dynamic properties. The incorporation of phenyl-siloxane components, e.g., as in a poly(dimethyl-co-diphenyl)siloxane random copolymer, is known to suppress such crystallization. Molecular dynamics (MD) simulations can be a powerful tool to understand such effects in atomistic detail. Unfortunately, all-atomistic molecular dynamics (AAMD) is limited in both spatial dimensions and simulation times it can probe. To overcome such constraints and to extend to more useful length- and time-scales, we systematically develop a coarse-grained molecular dynamics (CGMD) model for the poly(dimethyl-co-diphenyl)siloxane system with bonded and non-bonded interactions determined from all-atomistic simulations by the iterative Boltzmann inversion (IBI) method. Additionally, we propose a lever rule that can be useful to generate non-bonded potentials for such systems without reference to the all-atomistic ground truth. Our model captures the structural and dynamic properties of the copolymer material with quantitative accuracy and is useful to study long-time dynamics of highly-entangled systems, sequence-dependent properties, phase behaviour, etc.

Abstract Image

聚(二甲基-共-二苯基)硅氧烷粗粒度分子动力学模型的开发。
聚二甲基硅氧烷是一种应用广泛的重要聚合物材料。然而,低温等环境影响会导致这种材料结晶,从而改变其结构和动态特性。众所周知,加入苯基硅氧烷成分(如聚(二甲基-共-二苯基)硅氧烷无规共聚物)可抑制这种结晶。分子动力学(MD)模拟是了解此类原子细节效应的有力工具。遗憾的是,全原子分子动力学(AAMD)在空间维度和模拟时间上都受到限制。为了克服这些限制并扩展到更有用的长度和时间尺度,我们系统地为聚(二甲基-共-二苯基)硅氧烷体系开发了一个粗粒度分子动力学(CGMD)模型,通过迭代玻尔兹曼反演(IBI)方法从全原子模拟中确定了成键和非成键相互作用。此外,我们还提出了一种杠杆原理,可用于生成此类系统的非键势,而无需参考全原子基本事实。我们的模型定量准确地捕捉了共聚物材料的结构和动态特性,有助于研究高度纠缠系统的长时间动态、序列依赖特性、相行为等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信