Vincent Conrad Oppenheimer, Peter Le, Cathy Tran, Haobin Wang, Marino J E Resendiz
{"title":"C3-Chlorination of C2-substituted benzo[<i>b</i>]thiophene derivatives in the presence of sodium hypochlorite.","authors":"Vincent Conrad Oppenheimer, Peter Le, Cathy Tran, Haobin Wang, Marino J E Resendiz","doi":"10.1039/d4ob01185f","DOIUrl":null,"url":null,"abstract":"<p><p>Benzo[<i>b</i>]thiophene rings are common synthons for the development of novel drugs and materials, and thus, the discovery of facile ways for their functionalization is of value. In this work, a new method for the C3-chlorination of C2-substituted benzothiophene derivatives is described. The chlorine source is sodium hypochlorite pentahydrate (NaOCl·5H<sub>2</sub>O), and optimal transformations occur in aqueous acetonitrile at 65-75 °C to provide the corresponding C3-halogenated products in variable yields (30-65%). The reaction occurs in the presence of vinyl and alkyl groups, while the presence of alcohols leads to competing oxidation reactions at the heterobenzylic position. The presence of a carbonyl group at the C2-position inhibited the halogenation reaction, while the use of benzofuran led to a highly exothermic reaction, presumably <i>via</i> the formation of a peroxide intermediate. Reactions carried out at lower temperatures led to side reactions associated with competing oxidative processes. To gain a better understanding of the mechanism of the reaction, DFT calculations were carried out, where the heteroatom enables the formation of a hypochlorous acidium ion that serves to generate a C2-C3 chloronium ion intermediate in a step-wise manner, which in turn leads to the formation of an <i>S</i>-stabilized C2-carbocation that undergoes re-aromatization to the corresponding C3-chlorinated products. To probe potential synthetic applications, a model C3-chloro derivative was coupled with phenylboronic acid using standard Suzuki-Miyaura coupling conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484177/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01185f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Benzo[b]thiophene rings are common synthons for the development of novel drugs and materials, and thus, the discovery of facile ways for their functionalization is of value. In this work, a new method for the C3-chlorination of C2-substituted benzothiophene derivatives is described. The chlorine source is sodium hypochlorite pentahydrate (NaOCl·5H2O), and optimal transformations occur in aqueous acetonitrile at 65-75 °C to provide the corresponding C3-halogenated products in variable yields (30-65%). The reaction occurs in the presence of vinyl and alkyl groups, while the presence of alcohols leads to competing oxidation reactions at the heterobenzylic position. The presence of a carbonyl group at the C2-position inhibited the halogenation reaction, while the use of benzofuran led to a highly exothermic reaction, presumably via the formation of a peroxide intermediate. Reactions carried out at lower temperatures led to side reactions associated with competing oxidative processes. To gain a better understanding of the mechanism of the reaction, DFT calculations were carried out, where the heteroatom enables the formation of a hypochlorous acidium ion that serves to generate a C2-C3 chloronium ion intermediate in a step-wise manner, which in turn leads to the formation of an S-stabilized C2-carbocation that undergoes re-aromatization to the corresponding C3-chlorinated products. To probe potential synthetic applications, a model C3-chloro derivative was coupled with phenylboronic acid using standard Suzuki-Miyaura coupling conditions.