{"title":"Comb-like poly(β-amino ester)-integrated PEO-based self-healing solid electrolytes for fast ion conduction in lithium-sulfur batteries.","authors":"Hui-Min Wang, Mengdi Geng, Jing Bai, Dezhong Zhou, Weibo Hua, Sheng Liu, Xueping Gao","doi":"10.1039/d4mh01181c","DOIUrl":null,"url":null,"abstract":"<p><p>All-solid-state lithium-sulfur batteries (ASSLSBs) using poly(ethylene oxide) (PEO) electrolytes offer significant advantages in energy density and safety. However, their development is hampered by the slow Li<sup>+</sup> conduction in solid polymer electrolytes and sluggish electrochemical conversion at the cathode-electrolyte interface. Herein, we fabricate a self-healing poly(β-amino ester) with a comb-like topological structure and multiple functional groups, synthesized through a Michael addition strategy. This material modifies the PEO-based solid-state electrolyte, creating fast Li<sup>+</sup> transport channels and improving polysulfides conversion kinetics at the electrode surface. Consequently, both modified all-solid-state lithium symmetric cells and lithium-sulfur batteries exhibit improved electrochemical performance. This work demonstrates an expanded interpenetrating macromolecular engineering approach to develop highly ion-conductive solid polymer electrolytes for ASSLSBs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01181c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
All-solid-state lithium-sulfur batteries (ASSLSBs) using poly(ethylene oxide) (PEO) electrolytes offer significant advantages in energy density and safety. However, their development is hampered by the slow Li+ conduction in solid polymer electrolytes and sluggish electrochemical conversion at the cathode-electrolyte interface. Herein, we fabricate a self-healing poly(β-amino ester) with a comb-like topological structure and multiple functional groups, synthesized through a Michael addition strategy. This material modifies the PEO-based solid-state electrolyte, creating fast Li+ transport channels and improving polysulfides conversion kinetics at the electrode surface. Consequently, both modified all-solid-state lithium symmetric cells and lithium-sulfur batteries exhibit improved electrochemical performance. This work demonstrates an expanded interpenetrating macromolecular engineering approach to develop highly ion-conductive solid polymer electrolytes for ASSLSBs.