{"title":"Study of the Energy Crossing Between Excited States Affected by the Electronegativity of Substituents for Three 4-Azido-1,8-naphthalimide Derivatives.","authors":"Anran Huang, Honghong Xu, Zhicheng Xia, Wenxuan Hao, Dongxia Wu, Haixiang He","doi":"10.1021/acs.jpca.4c02817","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid detection of H<sub>2</sub>S is crucial for human physiological health and natural ecosystems. In this study, the fluorescent sensing mechanisms of three 4-azido-1,8-naphthalimide-based fluorescent probes to monitor H<sub>2</sub>S were theoretically investigated by density functional theory and time-dependent density functional theory. The potential energy curve of the charge transfer (CT) state has a crossover with that of the locally excited (LE) state proved by the constructed linear interpolating internal coordinate pathway. Thus, the transform takes place from the LE state to the CT state causing the fluorescence quenching of the probes from a nonradiative transition process of the CT state. The distance between the Franck-Condon point and the minimal energy conical intersection becomes larger with the increase of the electronegativity of substituents on the 1,8-naphthalimide fluorophore. In addition, the degree of charge separation is closely related to the energy difference between the CT and the LE states which are also essentially affected by the electronegativity of the substituents. Since the electronegativity of the substituents has proved important for the probes, our work lays a certain theoretical foundation for the design and synthesis of more sensitive 4-azido-1,8-naphthalimide-based fluorescent probes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c02817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid detection of H2S is crucial for human physiological health and natural ecosystems. In this study, the fluorescent sensing mechanisms of three 4-azido-1,8-naphthalimide-based fluorescent probes to monitor H2S were theoretically investigated by density functional theory and time-dependent density functional theory. The potential energy curve of the charge transfer (CT) state has a crossover with that of the locally excited (LE) state proved by the constructed linear interpolating internal coordinate pathway. Thus, the transform takes place from the LE state to the CT state causing the fluorescence quenching of the probes from a nonradiative transition process of the CT state. The distance between the Franck-Condon point and the minimal energy conical intersection becomes larger with the increase of the electronegativity of substituents on the 1,8-naphthalimide fluorophore. In addition, the degree of charge separation is closely related to the energy difference between the CT and the LE states which are also essentially affected by the electronegativity of the substituents. Since the electronegativity of the substituents has proved important for the probes, our work lays a certain theoretical foundation for the design and synthesis of more sensitive 4-azido-1,8-naphthalimide-based fluorescent probes.