Dissociation Energies via Embedding Techniques.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-10-24 Epub Date: 2024-10-15 DOI:10.1021/acs.jpca.4c02851
Florian Feyersinger, Peter E Hartmann, Johannes Hoja, Peter Reinholdt, Florian Libisch, Jacob Kongsted, Peter Puschnig, A Daniel Boese
{"title":"Dissociation Energies via Embedding Techniques.","authors":"Florian Feyersinger, Peter E Hartmann, Johannes Hoja, Peter Reinholdt, Florian Libisch, Jacob Kongsted, Peter Puschnig, A Daniel Boese","doi":"10.1021/acs.jpca.4c02851","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the large number of interactions, evaluating interaction energies for large or periodic systems results in time-consuming calculations. Prime examples are liquids, adsorbates, and molecular crystals. Thus, there is a high demand for a cheap but still accurate method to determine interaction energies and gradients. One approach to counteract the computational cost is to fragment a large cluster into smaller subsystems, sometimes called many-body expansion, with the fragments being molecules or parts thereof. These subsystems can then be embedded into larger entities, representing the bigger system. In this work, we test several subsystem approaches and explore their limits and behaviors, determined by calculations of trimer interaction energies. The methods presented here encompass mechanical embedding, point charges, polarizable embedding, polarizable density embedding, and density embedding. We evaluate nonembedded fragmentation, QM/MM (quantum mechanics/molecular mechanics), and QM/QM (quantum mechanics/quantum mechanics) embedding theories. Finally, we make use of symmetry-adapted perturbation theory utilizing density functional theory for the monomers to interpret the results. Depending on the strength of the interaction, different embedding methods and schemes prove favorable to accurately describe a system. The embedding approaches presented here are able to decrease the interaction energy errors with respect to full system calculations by a factor of up to 20 in comparison to simple/unembedded approaches, leading to errors below 0.1 kJ/mol.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514013/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c02851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the large number of interactions, evaluating interaction energies for large or periodic systems results in time-consuming calculations. Prime examples are liquids, adsorbates, and molecular crystals. Thus, there is a high demand for a cheap but still accurate method to determine interaction energies and gradients. One approach to counteract the computational cost is to fragment a large cluster into smaller subsystems, sometimes called many-body expansion, with the fragments being molecules or parts thereof. These subsystems can then be embedded into larger entities, representing the bigger system. In this work, we test several subsystem approaches and explore their limits and behaviors, determined by calculations of trimer interaction energies. The methods presented here encompass mechanical embedding, point charges, polarizable embedding, polarizable density embedding, and density embedding. We evaluate nonembedded fragmentation, QM/MM (quantum mechanics/molecular mechanics), and QM/QM (quantum mechanics/quantum mechanics) embedding theories. Finally, we make use of symmetry-adapted perturbation theory utilizing density functional theory for the monomers to interpret the results. Depending on the strength of the interaction, different embedding methods and schemes prove favorable to accurately describe a system. The embedding approaches presented here are able to decrease the interaction energy errors with respect to full system calculations by a factor of up to 20 in comparison to simple/unembedded approaches, leading to errors below 0.1 kJ/mol.

通过嵌入技术获得解离能
由于存在大量的相互作用,评估大型或周期性系统的相互作用能需要耗费大量时间进行计算。最典型的例子就是液体、吸附剂和分子晶体。因此,人们非常需要一种既便宜又精确的方法来确定相互作用能和梯度。抵消计算成本的一种方法是将一个大集群分割成较小的子系统,有时也称为多体扩展,碎片是分子或分子的一部分。然后,这些子系统可以嵌入更大的实体,代表更大的系统。在这项工作中,我们测试了几种子系统方法,并通过三聚体相互作用能的计算,探索了它们的极限和行为。这里介绍的方法包括机械嵌入、点电荷、可极化嵌入、可极化密度嵌入和密度嵌入。我们评估了非嵌入碎片、QM/MM(量子力学/分子力学)和 QM/QM(量子力学/量子力学)嵌入理论。最后,我们利用单体密度泛函理论的对称适配扰动理论来解释结果。根据相互作用的强度,不同的嵌入方法和方案被证明有利于准确描述一个系统。与简单/未嵌入方法相比,本文介绍的嵌入方法能够将相互作用能量误差降低到全系统计算结果的 20 倍,误差低于 0.1 kJ/mol。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信